• Title/Summary/Keyword: Spray pressure

Search Result 1,060, Processing Time 0.024 seconds

Prediction of the Environmental Conditions in Underground Tunnelling Spaces (地下터널 굴착作業場內 作業環境豫測)

  • Park, Hee-Bong
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.116-122
    • /
    • 1992
  • A comprehensive, nonsteady state, computer simulation program for the environmental conditions in advancing tunnels (the HEADSIM simulation program) is constructed and successfully validated with heat balance amongst all heat sources, and with mass conservation amongst various airflows including the leakage air from ducts, under timedependent variations of inlet air conditions. which include sudden, diurnal and seasonal changes. Heat conduction in the wall strata and face strata is simulated with most complicated boundary conditions using the finite difference method, and the climatic conditions in roadway sections which contain air ducts, booster fan, spray cooler, compressed air pipes, cold water pipes, return water pipes, machinery and broken rock are simulated taking into account the variations of face operation and the heat storage mechanism in the strata. The limitations of simulation time steps and roadway section lengths are defined according to the stability criteria satisfying the principles of thermodynamics. Variations of heat transfer coefficients, which are newly set, and those of wetness factors are taken into account according to the variations of other parameters and the stepwise advance of the face. Newly-derived formulae are used for computing the air duct leakage and the pressure inside of the duct. A new concept of an 'imaginary duct' is introduced to simulate the climatic conditions in tunnels during holiday periods, which directly affect conditions on subsequent working days under the consideration of natural convection. A subsidiary program (the WALLSIM simulation program) is made to compute the dimensionless tunnel surface temperatures and to compare the results with those from analytical approaches, and to demonstrate the stability, convergence and accuracy of the strata heat conduction simulation, adopting the finite difference method. The WALLSIM also has wide applications, including those for the computation of age coefficients.

  • PDF

Study of Combustion Characteristics with Compression Ratio Change in Ultra-Lean LPG Direct Injection Engine (압축비 변화에 따른 초희박 직접분사식 LPG엔진의 연소특성 연구)

  • Cho, See Hyeon;Yoon, Jun Kyu;Park, Cheol Woong;Oh, Seung Mook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.837-844
    • /
    • 2014
  • Automotive manufacturers have recently developed various technologies for improving fuel economy and satisfying enhanced emission regulations. The ultra-lean direct injection engine is a promising technology because it has the advantage of improving thermal efficiency through the deliberate control of ignition. A conventional LPG engine has been redesigned to an ultra-lean-burn LPG direct injection engine in order to adopt combustion system of ultra-lean-burn. This study is aimed at investigating the effect of a change in the compression ratio on the performance and emission characteristics of a lean-burn LPG engine. The fuel consumption, heat release rate, combustion pressure, and emission characteristics are estimated depending on changing the effect of compression ratio. When the compression ratio is increased, it is difficult to improve the fuel consumption owing to an unstable combustion state, but the total hydrocarbon and nitrogen oxide emissions are reduced.

Application of CFD-FEM Coupling Methodology to Thermal Analysis on the Large-size Marine Diesel Engine (선박용 대형 디젤 엔진 열 해석을 위한 CFD-FEM 연계 방법의 적용)

  • Kim, Han-Sang;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2008
  • Temperatures of engine head and liner depend on many factors such as spray and combustion process, coolant passage flow and engine related structures. To estimate the temperature distribution of engine structure, multi-dimensional computational fluid dynamics (CFD) codes have been mainly adopted. In this case, it is of great importance to obtain the realistic wall temperature distribution of entire engine structure. In the present work, a CFD-FEM coupling methodology was presented to address this demand. This approach was applied to a real large-size marine diesel engine. CFD combustion and coolant flow simulations were coupled to FEM temperature analysis. Wall heat flux and wall temperature data were interfaced between combustion simulation and solid component temperature analysis via translator by a commercial CFD package named FIRE by AVL. Heat transfer coefficient and surface temperature data were exchanged and mapped between coolant flow simulation and FEM temperature analysis. Results indicate that there exists the optimum cell thickness near combustion chamber wall to reasonably predict the wall heat flux during combustion period. The present study also shows that the effect of cell refining on predicting in-cylinder pressure during combustion is negligible. Hence, the basic guidance on obtaining the wall heat flux needed for the reasonable CFD-FEM coupling analysis has been established. It is expected that this coupling methodology is a robust tool for practical engine design and can be applied to further assessment of the temperature distribution of other engine components.

Spray and Combustion Characteristics of High Density Hydrocarbon Fuel (고밀도 탄화수소계 연료의 분무 및 연소특성)

  • Lim, Byoung-Jik;Moon, Il-Yoon;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.26-33
    • /
    • 2006
  • The use of high-density propellants can provide performance advantages in space launch vehicles by allowing an improved structural ratio due to smaller propellants tanks. The Jet A-1 fuel is currently used in Korean space launch vehicle development and it has lower density than other advanced hydrocarbon fuels such as RP-1 or RG-1. In this paper, the results of hydraulic and combustion tests conducted for the two newly developed densified hydrocarbon fuels are presented and they are compared with the results of Jet A-1. Conclusively, the two densified hydrocarbon fuels presented equivalent or even higher combustion performance compared to the Jet A-1 and the performance difference was found to be more obvious in the injector of external mixing.

Empirical Correlations for Penetration Height of Liquid Jet in Uniform Cross Flow - A Review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.176-185
    • /
    • 2011
  • The empirical correlations for the prediction of penetration height of liquid jet in crossflow are reviewed and classified in this study. Around thirty different correlations had been proposed by many investigators. It has generally known that the penetration height of a liquid jet in a cross-flow is a function of the liquid to air momentum flux ratio and the normalized downstream distance from the injector. However, several researchers incorporated the Weber number, liquid-to-water or air viscosity ratio, pressure ratio or Reynolds number, temperature ratio in the empirical correlations. The existing correlations can be grouped as correlations in a power-law, logarithmic, and exponential forms, respectively. Correlations in a power-law form can be further classified as three groups such as basic form, Weber number form and other parameters form. It should be pointed out that correlations in a logarithmic form in terms of Weber number or any other parameters could not be found. Universal correlation has still not been established due to the significant discrepancies between various correlations suggested to date. Several of the studies reported the significant discrepancies of predicted values by the existing correlations. The possible reasons for discrepancies will be summarized as measurement technique, assumptions made in defining terms in the liquid to air momentum flux ratio, difficulties in defining the boundaries of the liquid jets, and nozzle/injector geometry. Evaluation of validity for the correlations proposed recently by several investigators is essentially required. Those include eight power-law forms, two logarithmic forms, and one exponential form.

Experimental Investigation for Multi-Element Dual Swirl Coaxial Injector (다중요소 Dual Swirl 인젝터에 관한 실험적 연구)

  • Shin, Hun-Cheol;Lee, Seock-Chin;Park, Hee-Ho;Kim, Sun-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.137-144
    • /
    • 2006
  • The basic data obtained in this research for single element performance were directly applied to the design of injector head(7 elements). Designed performance of the 7-element Swirl Coaxial injector was $245kg_f$ sea level thrust with 20bar combustion chamber pressure. Numerical analysis were performed to obtain the change of spray pattern for the design of injector head, and we confirmed the feasibility and application of those results. Hot tests were performed for the multi-element injector to compare with the performance of the single element injector and those can be applied to the design of scaled liquid rocket engine. The basic data obtained in this research can be directly applied to the real liquid rocket injector design.

Manufacturing Method of Red Ginseng Extract Pills by Centrifugal Coating Granulating System (원심분리 코팅방식을 이용한 홍삼농축액 환의 제조방법)

  • Kwak, Yi-Seong;Choi, Young-Gi;Kwon, Hyun-Jeong;Kim, Na-Mi
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.229-233
    • /
    • 2009
  • The centrifugal coating granulating system, a new method of preparing red ginseng extract pills, has been developed. The red ginseng extract was first powdered with 85.5% of edible ethanol and dried for 3 to 4 hours at 50$^{\circ}C$. The powders were fed in chamber of centrifugal coating granulating system and then granulated, sequentially. The centrifugal system operated at 20 to 50$^{\circ}C$ of inlet temperature, 1 to 1,000 g/min of feeding speed, 60 to 70$^{\circ}C$ of atmosphere temperature of intake, 3.0 to 4.0 bar of spray atmosphere pressure, 1,000 to 1,500 rpm of centrifugal plate speed and 25 to 40$^{\circ}C$ of outlet temperature. The product yield was about 85% and preparation time was 7 to 8 hours. Especially, major ginsenoside components of red ginseng were not decomposed after processing of red ginseng extract pill.

Experiment and Evaluation of Mist Diffusion from Water Tube for Blasting Dust Control in accordance with the Explosives Position (폭약 기폭위치에 따른 발파 분진제어용 워터튜브 주입수의 분무확산 실험 및 평가)

  • Yang, Hyung-Sik;Ko, Young-Hun;Kim, Jung-Gyu;Noh, You-Song;Park, Hoon;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2015
  • A water tube with detonating cord was devised to control the blast dust. Water diffusion experiments with different detonating cord positions were conducted during the series of experiments to optimize the design parameters of the tube. Images from high speed camera were analyzed to evaluate the results. AUTODYN program was adopted to simulate the diffusion process of water and compared with the images. Diffusion of water shows cross flow in case of external charge while the internal case shows radial flow. A bubble ring was formed during the numerical analysis of internal charge case as occurred in underwater blast. An additional bubble ring was formed by the reflection pressure from the ground. And the Weber number was determined as sufficient for spray atomization performance of the water tube.

A Study on the Particle Size and Velocity Profile on a Gasoline Port Injector Using a Phase Doppler Particle Analyzers (PDPA) (위상 도플러 입자 분석기(PDPA)를 이용한 가솔린 포트 인젝터의 입자 크기 및 속도 프로파일에 관한 연구)

  • KIM, HYOJIN;JO, HYUN;TONGCHAI, SAKDA;LIM, OCKTACKE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.300-307
    • /
    • 2017
  • This study is to investigate particle size and velocity profile of gasoline port injector using Phase Doppler Particle Analyzer (PDPA). In this experiment, a GV 250 Delphi port injector used for motorcycles was used for liquid injection. The injector consists of four holes and has a static flow rate of 2.13 g/s. The fuel used in the injection was N-heptane, which is similar to gasoline, as an alternative fuel. The test fuel was injected at an atmospheric temperature of $20^{\circ}C$ and an open atmosphere of 1 atm. The injection time was 10 ms and the injection pressure was 3.5 bar in PDPA experiment. The experimental target position was fiexd at 30, 50 and 75 mm from the nozzle tip and data were collected for a total of 10,000 samples. The experimental results show that the length diameter (D10), the Sauter mean diameter ($D_{32}$), and the mean droplet velocity (MDV) are $45-54{\mu}m$, $99-115{\mu}m$ and 15-21 m/s, respectively.

THE COMPARATIVE STUDY OF THERMAL INDUCTIVE EFFECT BETWEEN INTERNAL CONNECTION AND EXTERNAL CONNECTION IMPLANT IN ABUTMENT PREPARATION (구강내에서 임플랜트 지대주 형성 시 내부연결방식과 외부연결방식간의 열전달 효과 비교)

  • Huh, Jung-Bo;Ko, Sok-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.60-70
    • /
    • 2007
  • Statement of problem: The cement-type abutment would be needed for the reduction of its body in order to correct the axis and to assure occlusal clearance. In the case of intraoral preparation, there is a potential risk that generated heat could be transmitted into the bone-implant interface, where it can cause deterioration of tissues around the implant and failed osseointegration. Purpose: The purpose of this study was to assess the difference of the heat transmitting effect on external and internal connection implant types under various conditions. Material and method: For evaluating the effects of alternating temperature, the thermocoupling wires were attached on 3 areas of the implant fixture surface corresponding to the cervical, middle, and apex. The abutments were removed 1mm in depth horizontally with diamond burs and were polished for 30 seconds at low speed with silicone points using pressure as applied in routine clinical practice. Obtained data were analyzed using Mann-Whitney rank-sum test and Wilcoxon / Kruskal-Wallis Tests. Result: Increased temperature on bone-implant interface was evident without air-water spray coolant both at high speed reduction and low speed polishing (p<.05). But, the difference between connection types was not shown. Conclusion: The reduction procedure of abutment without using proper coolant leads to serious damage of oral tissues around the implant irrespective of external and internal connection type.