• Title/Summary/Keyword: Spray Characteristics

Search Result 1,869, Processing Time 0.024 seconds

A Numerical Study on the Spray Characteristics of the Swirl-Type Gasoline Direct Injector (스월형 가솔린 직분식 인젝터의 분무특성에 대한 수치적 연구)

  • 이충훈;정수진;김우승;이기형;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.9-21
    • /
    • 2000
  • In this study, the characteristics of high-pressure swirl injector have been studied using a commercial CFD code, STAR-CD and experiment to investigate the effect of the length of orifice and swirl port on the spray characteristics. Influences of swirl port angle and initial conditions have also been examined in terms of penetration depth and Sauter`s mean diameter. Computed results of the spray characteristics are compared with experimental results. The results show that the tangential velocity at the nozzle exit decreases, but the axial velocity increases as swirl port angle is increased. Hence, the static flow rate increases, but the initial spray angle decreases with increasing the swirl port angle. It is also shown that the values of the initial SMD used as input data for spray simulation influences the penetration depth and SMD. The spray pattern from the present numerical simulation agrees well with experimental result.

  • PDF

A Study on the Injection Characteristics of Biodiesel Fuels Injected through Common-rail Injection System (커먼레일식 분사시스템에서 바이오디젤연료의 분사특성에 관한 연구)

  • Seo, Young-Taek;Suh, Hyun-Kyu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.97-104
    • /
    • 2007
  • The object of this work is to analyze the macroscopic spray performance and atomization characteristics between diesel and biodiesel fuels. In this study, the effects of mixture ratios of biodiesel fuel on the spray tip penetration, fuel injection rate, spray cone angle, and the atomization characteristics such as droplet size, droplets distribution, and spray arrival time according to the axial distance were investigated at various injection parameters. It is revealed that the injection rate is more affected by injection pressure than mixture ratio. And, the spray development process is closely matched between diesel and biodiesel fuels. However, the droplet atomization characteristics of biodiesel shows deteriorated results as the mixture ratio of biodiesel increased because of the high viscosity and density.

An Experimental Study on the Spray Behaviors of Swirl and Slit Injector to Direct Injection Spark Injection Engine (DISI 엔진용 스월인젝터와 슬릿인젝터의 분무 거동에 관한 연구)

  • Lee Changhee;Lee Kihyung;Choi Youngjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • The spray characteristics of DISI injector has a great role in engine efficiency and emission. Thus, many researchers have been studied to investigate the spray characteristics of hollow cone type and slit type injector which are used in DISI engine. In this study, we tried to provide spray parameters which effect on the spray characteristics such as injection pressure, ambient pressure and ambient temperature. In addition, we calculated $t_b\;and\;t_c$ to investigate the break up mechanism of test injectors and also obtained $C_v$ to evaluate the spray characteristics. From this study, As the ambient pressure increases in case of slit injector, $C_v$ decreases.

Macroscopic Behavior and Atomization Characteristics of Bio-diesel Fuels (바이오 디젤 연료의 분무 거동 및 미립화 특성)

  • Suh, Hyun-Kyu;Park, Sung-Wook;Kwon, Sang-Il;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.23-29
    • /
    • 2004
  • This work was conducted to figure out the atomization characteristics of three types of bio-diesel fuels using a common-rail injection system. The process of spray development was visualized by using a spray visualization system composed of a Nd:YAG laser and an ICCD camera, The spray tip penetrations were analyzed based on the frozen images from the spray visualization system. On the other hand, the microscopic atomization characteristics such as the distributions of SMD and axial mean velocity were measured by using a phase Doppler particle analyzer system, It is revealed that the sprays of the bio-diesel fuels have larger SMD than that of diesel fuel mainly due to high viscosity of bio-diesel. Different characteristics of bio-diesel fuels were also measured in spray tip penetrations according to the fuels and mixing ration.

The Effect of Viscosity on the Spray Characteristics of Pressure Swirl Atomizer (스월분무특성에 미치는 점성의 영향)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.24-29
    • /
    • 1999
  • In the pressure swirl atomizer, the liquid is injected through tangential passages into a swirl chamber, from which it emerges with both tangential and axial velocity components to form a thin conical sheet at the nozzle exit. This sheet rapidly attenuates, finally disintegrating into ligaments and then drops. The purpose of this study is to measure the spray characteristics according to variation of viscosity of the spray produced by the pressure swirl atomizer. The nozzle tested here were especially designed for this investigation. The discharge coefficient is determined by measuring the volume flow rate with a flow meter and the cone angle of the liquid sheets issuing from the nozzle is obtained from series of photographs of the sheet for various liquid viscosity and injection pressure. And mean drop size is measured by image processing method. It is found that the geometrical characteristics of the nozzle and the variation of viscosity were the influential parameters to determine the spray characteristics such as the cone angle, discharge coefficients and SMD.

  • PDF

Comparison of spray characteristics for ammonia, ethanol, n-decane by using numerical simulation (시뮬레이션을 이용한 암모니아, 에탄올, 노말데케인 분무 특성 비교)

  • Lee, Jaejin;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.38-44
    • /
    • 2022
  • Due to increasingly strict emission regulations for carbon-based fuels in the shipping industry, there is a significant motivation to investigate the alternative fuel. Ammonia is one of the attractive alternative fuels as a carbon-free fuel. Since ammonia has different properties such as high vapor pressure and low boiling point compared to conventional fuels, further research into ammonia spray behavior is important. In this work, the spray characteristics of ammonia and other fluids (ethanol, n-decane) were compared by using numerical simulation. The results show that the spray characteristics of ammonia differs from those of the others due to the occurrence of flash boiling. The narrow-dispersed spray with accelerated velocity at the center have been observed for ammonia. It is also found that droplets of ammonia achieve smaller diameter with more uniform distribution, leading to better atomization behavior compared to the others.

Effect of Injection Parameters on Diesel Spray Characteristics (디젤분무 특성에 미치는 분사인자의 영향)

  • Sim Song-Cheol;Jung Byung-Kook;Ahn Byoung-Kyu;Kim Jang-Hein;Jung Jae-Yeon;Song Kyu-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • The characteristics of diesel spray have effect on the engine Performance such as power. fuel consumption and emissions. Therefore, This study was Performed to investigate the effect of various injection parameters. In this study. the experiment is performed by using the high temperature and high pressure chamber. Spray behaviors are visualized by using the high speed camera and spray angle. Penetration etc. are measured. Experimental results are summarized as follows ; 1) Correlations of spray Penetration is expressed as follows $$0 $$t_b 2) Correlations of spray Angle is expressed as follows $$T_a=293K \;;\; tan({\theta}/2)=0.59({\rho}_a/{\rho}_f)^{0.437}$$ $$T_a=473K\;;\; tan({\theta}/2)=0.588({\rho}_a/{\rho}_f)^{0.404}$$ 3) The measured macro characteristics - spray tip penetration and spray angle agreed well with established correlations.

A Study on the Spray and Fuel-Film Formation Mechanism of MPI Injector (다점 분사식 인젝터의 분무 및 벽류 생성 과정에 관한 연구)

  • Lee, K.H.;Lee, C.S.;Kim, B.K.;Sung, B.K.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.33-41
    • /
    • 1996
  • Mixture formation is one of the important factors to improve combustion performance of MPI gasoline engines. This is affected by spray and atomization characteristics of injector. Especially, in the case of EGI system, air-fuel mixing period is too short and formed a lot of fuel-film in the intake manifold and cylinder wall. This fuel-film is not burnt in cylinder, it is exhausted in the form of HC emission. In this paper, spray characteristics such as size distributions, SMD, and spray angle are measured by PMAS, and the fuel-film measuring device is developed specially. Using this device, the amount and distribution of fuel-film which flows into through valve can be measured Quantitatively. As the result of these experiments, the information of optimal spray characteristics and injection condition that minimize the fuel-film can be built up.

  • PDF

Experimental Analysis and Numerical Modeling Using LISA-DDB Hybrid Breakup Model of Direct Injected Gasoline Spray

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1812-1819
    • /
    • 2003
  • This paper presents the effect of injection pressure on the atomization characteristics of high-pressure injector in a direct injection gasoline engine both experimentally and numerically. The atomization characteristics such as mean droplet size, mean velocity, and velocity distribution were measured by phase Doppler particle analyzer. The spray development, spray penetration, and global spray structure were visualized using a laser sheet method. In order to investigate the atomization process in more detail, the calculations with the LISA-DDB hybrid model were performed. The results provide the effect of injection pressure on the macroscopic and microscopic behaviors such as spray development, spray penetration, mean droplet size, and mean velocity distribution. It is revealed that the accuracy of prediction is promoted by using the LISA-DDB hybrid breakup model, comparing to the original LISA model or TAB model alone. And the characteristics of the primary and secondary breakups have been investigated by numerical approach.

Basic Study on Combustion Characteristics of Coaxial Premixed Burner with the Addition of $Al_2O_3$ Particles (산화 알루미나 입자 첨가에 따른 동축류 예혼합 연소기의 연소 특성 기초연구)

  • Park, Seung-Il;Kim, Go-Tae;Kim, Nam-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.58-65
    • /
    • 2011
  • Thermal spray technology has been used in many industrial application. Especially, thermal spray coating have been employed with the purposes of achieving better resistances in abrasion, heat and corrosion. In the previous studies on the thermal spray coating, thermal spray characteristics from the perspective of combustion engineering have not been investigated sufficiently, while the material characteristics of the coated substrates have been investigated widely. In this study, the effect of spray particles on the flame behavior was experimentally investigated. The amount of the injected particles was measured using the light scattering method and the temperature of the particles was estimated using a two-color method. Various flame-spray interactions were observed and it was found that the high temperature zone near the flame is elongated by particles density. Based on these results, the applicability of the light scattering method and the two-color method was discussed.