• Title/Summary/Keyword: Split-Algorithm

Search Result 316, Processing Time 0.024 seconds

A Plastic-Damage Model for Lightweight Concrete and Normal Weight Concrete

  • Koh, C.G.;Teng, M.Q.;Wee, T.H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.123-136
    • /
    • 2008
  • A new plastic-damage constitutive model applicable to lightweight concrete (LWC) and normal weight concrete (NWC) is proposed in this paper based on both continuum damage mechanics and plasticity theories. Two damage variables are used to represent tensile and compressive damage independently. The effective stress is computed in the Drucker-Prager multi-surface plasticity framework. The stress is then computed by multiplication of the damaged part and the effective part. The proposed model is coded as a user material subroutine and incorporated in a finite element analysis software. The constitutive integration algorithm is implemented by adopting the operator split involving elastic predictor, plastic corrector and damage corrector. The numerical study shows that the algorithm is efficient and robust in the finite element analysis. Experimental investigation is conducted to verify the proposed model involving both static and dynamic tests. The very good agreement between the numerical results and experimental results demonstrates the capability of the proposed model to capture the behaviors of LWC and NWC structures for static and impact loading.

A Study on Selection of Split Variable in Constructing Classification Tree (의사결정나무에서 분리 변수 선택에 관한 연구)

  • 정성석;김순영;임한필
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.347-357
    • /
    • 2004
  • It is very important to select a split variable in constructing the classification tree. The efficiency of a classification tree algorithm can be evaluated by the variable selection bias and the variable selection power. The C4.5 has largely biased variable selection due to the influence of many distinct values in variable selection and the QUEST has low variable selection power when a continuous predictor variable doesn't deviate from normal distribution. In this thesis, we propose the SRT algorithm which overcomes the drawback of the C4.5 and the QUEST. Simulations were performed to compare the SRT with the C4.5 and the QUEST. As a result, the SRT is characterized with low biased variable selection and robust variable selection power.

Decision Tree Based Context Clustering with Cross Likelihood Ratio for HMM-based TTS (HMM 기반의 TTS를 위한 상호유사도 비율을 이용한 결정트리 기반의 문맥 군집화)

  • Jung, Chi-Sang;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.174-180
    • /
    • 2013
  • This paper proposes a decision tree based context clustering algorithm for HMM-based speech synthesis systems using the cross likelihood ratio with a hierarchical prior (CLRHP). Conventional algorithms tie the context-dependent HMM states that have similar statistical characteristics, but they do not consider the statistical similarity of split child nodes, which does not guarantee the statistical difference between the final leaf nodes. The proposed CLRHP algorithm improves the reliability of model parameters by taking a criterion of minimizing the statistical similarity of split child nodes. Experimental results verify the superiority of the proposed approach to conventional ones.

Automatic Extraction of UV patterns for Paper Money Inspection (지폐검사를 위한 UV 패턴의 자동추출)

  • Lee, Geon-Ho;Park, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.365-371
    • /
    • 2011
  • Most recently issued paper money includes security patterns that can be only identified by ultra violet (UV) illuminations. We propose an automatic extraction method of UV patterns for paper money inspection systems. The image acquired by camera and UV illumination is transformed to input data through preprocessing. And then, the Gaussian mixture model (GMM) and split-and-merge expectation maximization (SMEM) algorithm are applied to segment the image represented by input data. In order to extract the UV pattern from the segmented image, we develop a criterion using the area of covariance vector and the weight value. The experimental results on various paper money are presented to verify the usefulness of the proposed method.

A Study on the sound localization system using Subband CPSP Algorithm (Subband CPSP를 이용한 음원 추적 시스템에 관한 연구)

  • 오상헌;박규식;박재현;이현정;온승엽
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.102-105
    • /
    • 2000
  • This paper propose new sound localization algorithm that calculates TDOA(Time Difference Of Arrival) between the two received signals via two microphone array, The proposed Subband CPSP is a development of Previous CPSP method using subband approach. It first split the received microphone signals into three frequency bands and then calculates subband CPSP with corresponding SNR weights. This type of algorithm, Subband CPSP, can provide more accurate TDOA estimation results because it limits the effects of environmental noise within each subband. To verify the performance of the proposed Subband CPSP algorithm, computer simulation was conducted and it was compared with previous CPSP method. From the both simulation results, the proposed Subband CPSP is superior to previous CPSP algorithm more than accuracy for TDOA estimation.

  • PDF

Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Phan, Hoang-Nam;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.675-682
    • /
    • 2010
  • The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.

Load-Balanced One-hop Overlay Multipath Routing with Path Diversity

  • Liao, Jianxin;Tian, Shengwen;Wang, Jingyu;Li, Tonghong;Qi, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.443-461
    • /
    • 2014
  • Overlay routing has emerged as a promising approach to improve reliability and efficiency of the Internet. For one-hop overlay source routing, when a given primary path suffers from the link failure or performance degradation, the source can reroute the traffic to the destination via a strategically placed relay node. However, the over-heavy traffic passing through the same relay node may cause frequent package loss and delay jitter, which can degrade the throughput and utilization of the network. To overcome this problem, we propose a Load-Balanced One-hop Overlay Multipath Routing algorithm (LB-OOMR), in which the traffic is first split at the source edge nodes and then transmitted along multiple one-hop overlay paths. In order to determine an optimal split ratio for the traffic, we formulate the problem as a linear programming (LP) formulation, whose goal is to minimize the worse-case network congestion ratio. Since it is difficult to solve this LP problem in practical time, a heuristic algorithm is introduced to select the relay nodes for constructing the disjoint one-hop overlay paths, which greatly reduces the computational complexity of the LP algorithm. Simulations based on a real ISP network and a synthetic Internet topology show that our proposed algorithm can reduce the network congestion ratio dramatically, and achieve high-quality overlay routing service.

A Study on High Speed LDPC Decoder Algorithm based on dc saperation (dc 분리 기반의 고속 LDPC 복호 알고리즘에 관한 연구)

  • Kwon, Hae-Chan;Kim, Tae-Hoon;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2041-2047
    • /
    • 2013
  • In this paper, we proposed high speed LDPC decoding algorithm based on DVB-S2 standard. For implementing the high speed LDPC decoder, HSS algorithm which reduce the iteration numbers without performance degradation is applied. In HSS algorithm, check node update units are update at the same time of bit node update. HSS can be accelerated to the decoding speed because it does not need to separate calculation of the bit nodes, However, check node calculation blocks need many clocks because of just one memory is used. Therefore, this paper proposed dc-split memory structure in order to reduced the delay and high speed decoder is possible. Finally, this paper presented maximum split memory and throughput for various coding rates in DVB-S2 standard.

An Improved Adaptive Job Allocation Method for Multiprocessor Systems (다중처리기 시스템을 위한 적응적 작업할당 방법의 개선)

  • Ok, Gi-Sang;Park, Jun-Seok;Lee, Won-Ju;Jeon, Chang-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1502-1510
    • /
    • 1999
  • In adaptive job allocation method for multiprocessor systems a job is folded, or split in two halves, to fit for an available subcube in order to reduce the waiting time of jobs. In this method, however, since a job is folded whenever a subcube with the proper size is not found, the prolonged execution time caused by job split may override the savings in waiting time, in which case the total adaptive jobs may be increased. In this paper, an improved adaptive job allocation algorithm, called Estimate-fold allocation, Is presented and evaluated. The proposed algorithm estimates the costs and takes the better of two alternatives ; folding right away and waiting until a bigger subcube becomes available. The average total job execution cost of our algorithm is calculated and compared to those of the conventional adaptive, buddy, and gray-code algorithms through simulations. The results shows that our proposed algorithm performs better than others.

  • PDF

Development of Range-Dependent Ray Model for Sonar Simulator (소나 시뮬레이터용 거리 종속 음선 모델 개발)

  • Jung, Young-Cheol;Lee, Keunhwa;Seong, Woojae;Kim, Hyoung-Rok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.163-173
    • /
    • 2014
  • Sound propagation algorithm for a sonar simulator is required to run in real-time and should be able to model the range and depth dependence of the Korean ocean environments. Ray model satisfies these requirements and we developed an algorithm for range-dependent ocean environments. In this algorithm, we considered depth-dependence of sound speed through rays based on a rectangular cell method and layer method. Range-dependence of sound speed was implemented based on a split-step method in the range direction. Eigen-ray is calculated through an interpolation of ray bundles and Gaussian interpolation function was used. The received time signal of sonar was simulated by Fourier transform of eigen-ray solution in the frequency domain. Finally, for the verification of proposed algorithm, we compared the results of transmission loss with other validated models such as BELLHOP, SNUPE, KRAKEN and OASES, for the Pekeris waveguide, wedge, and deep ocean environments. As a result, we obtained satisfactory agreements among them.