• Title/Summary/Keyword: Spiral microchannel

Search Result 3, Processing Time 0.018 seconds

Microparticle Separator based on Dean Vortex in Spiral Microchannel (나선형 미세채널 내부에 형성되는 딘와류 이용한 미세입자 분리소자)

  • Byun, Kang Il;Kim, Hyung Jin;Kim, Byeong Hee;Seo, Young Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.555-560
    • /
    • 2014
  • This paper presents a microparticle separator using a spiral microchannel. A particle separator based on the dean vortex was designed, fabricated, and characterized. Two different spiral microchannels were fabricated. Width and initial radius of rotation in the spiral microchannel were fixed to $300{\mu}m$ and 1.75 mm, respectively. Two different depths of the microchannels were designed at $50{\mu}m$ and $80{\mu}m$. In this experimental study, the equilibrium position of microparticles was monitored by using fluorescent microbeads. In the case of a low dean number (<1.0), lift force and dean drag force were similar, indicating that microbeads were distributed to almost all areas across microchannels. However, in the case of a high dean number (>1.0), dean drag force rather than lift force was dominant, indicating that microbeads moved toward the inner wall of the spiral microchannel.

Flexible multimode pressure sensor based on liquid metal

  • Zhou, Xiaoping;Yu, Zihao
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.839-853
    • /
    • 2021
  • In this paper, a novel multimode liquid metal-based pressure sensor is developed. The main body of the sensor is composed of polydimethylsiloxane (PDMS) elastomer. The structure of the sensor looks like a sandwich, in which the upper structure contains a cylindrical cavity, and the bottom structure contains a spiral microchannel, and the middle partition layer separates the upper and the bottom structures. Then, the liquid metal is injected into the top cavity and the bottom microchannel. Based on linear elastic fracture mechanics, the deformation of the microchannel cross-section is theoretically analyzed. The changes of resistance, capacitance, and inductance of the microchannel under pressure are deduced, and the corresponding theoretical models are established. The theoretical values of the pressure sensor are in good agreement with experimental data, implying that the developed theoretical model can explain the performance of the sensor well.

Inertial Microfluidics-Based Cell Sorting

  • Kim, Ga-Yeong;Han, Jong-In;Park, Je-Kyun
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.257-267
    • /
    • 2018
  • Inertial microfluidics has attracted significant attention in recent years due to its superior benefits of high throughput, precise control, simplicity, and low cost. Many inertial microfluidic applications have been demonstrated for physiological sample processing, clinical diagnostics, and environmental monitoring and cleanup. In this review, we discuss the fundamental mechanisms and principles of inertial migration and Dean flow, which are the basis of inertial microfluidics, and provide basic scaling laws for designing the inertial microfluidic devices. This will allow end-users with diverse backgrounds to more easily take advantage of the inertial microfluidic technologies in a wide range of applications. A variety of recent applications are also classified according to the structure of the microchannel: straight channels and curved channels. Finally, several future perspectives of employing fluid inertia in microfluidic-based cell sorting are discussed. Inertial microfluidics is still expected to be promising in the near future with more novel designs using various shapes of cross section, sheath flows with different viscosities, or technologies that target micron and submicron bioparticles.