Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.6.839

Flexible multimode pressure sensor based on liquid metal  

Zhou, Xiaoping (School of Civil Engineering, Chongqing University)
Yu, Zihao (School of Civil Engineering, Chongqing University)
Publication Information
Smart Structures and Systems / v.28, no.6, 2021 , pp. 839-853 More about this Journal
Abstract
In this paper, a novel multimode liquid metal-based pressure sensor is developed. The main body of the sensor is composed of polydimethylsiloxane (PDMS) elastomer. The structure of the sensor looks like a sandwich, in which the upper structure contains a cylindrical cavity, and the bottom structure contains a spiral microchannel, and the middle partition layer separates the upper and the bottom structures. Then, the liquid metal is injected into the top cavity and the bottom microchannel. Based on linear elastic fracture mechanics, the deformation of the microchannel cross-section is theoretically analyzed. The changes of resistance, capacitance, and inductance of the microchannel under pressure are deduced, and the corresponding theoretical models are established. The theoretical values of the pressure sensor are in good agreement with experimental data, implying that the developed theoretical model can explain the performance of the sensor well.
Keywords
linear regression analysis; liquid metal; multimode; pressure sensor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Yang, X.F., Wang, Y.S. and Qing, X.L. (2018), "A flexible capacitive pressure sensor based on ionic liquid", Sensors, 18(7), 2395. https://doi.org/10.3390/s18072395   DOI
2 Zhang, L.J., Gao, M., Wang, R.H., Deng, Z.S. and Gui, L. (2019), "Stretchable pressure sensor with leakage-free liquid-metal electrodes", Sensors, 19(6), 1316. https://doi.org/10.3390/s19061316   DOI
3 Zhi, Z., Wang, H.Z. and Ou, J.P. (2006), "A new kind of FBG-based soil-pressure sensor", Proceedings of Optical Fiber Sensors Conference, Cancun, Mexico, October. https://doi.org/10.1364/OFS.2006.ThE90   DOI
4 Chuang, C.H., Liou, Y.R. and Shieh, M.Y. (2012), "Flexible tactile sensor array for foot pressure mapping system in a biped robot", Smart Struct. Syst., Int. J., 9(6), 535-547. https://doi.org/10.12989/sss.2012.9.6.535   DOI
5 Gao, Y.J., Ota, H., Schaler, E.W., Chen, K., Zhao, A., Gao, W., Fahad, H.M., Leng, Y., Zheng, A., Xiong, F., Zhang, C., Tai, L., Zhao, P., Fearing, R.S. and Javey, A. (2017), "Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring", Adv. Mater., 29(39), 1701985. https://doi.org/10.1002/adma.201701985   DOI
6 Hu, H., Shaikh, K. and Liu, C. (2007), "Super flexible sensor skin using liquid metal as interconnect", Proceedings of IEEE Sensors Conference, Atlanta, GA, USA, October. https://doi.org/10.1109/ICSENS.2007.4388525   DOI
7 Huang, Y., Fang, D., Wu, C., Wang, W.H., Guo, X.H. and Liu, P. (2016), "A flexible touch-pressure sensor array with wireless transmission system for robotic skin", Rev. Sci. Instrum., 87(6), 065007. https://doi.org/10.1063/1.4954199   DOI
8 Jung, T. and Yang, S. (2015), "Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel", Sensors, 15(5), 11823-11835. https://doi.org/10.3390/s150511823   DOI
9 Li, K., Turcotte, K. and Veres, T. (2019), "Stretchable strain sensors based on thermoplastic elastomer microfluidics embedded with liquid metal", Proceedings of IEEE Sensors Conference, Montreal, Canada, October. https://doi.org/10.1109/SENSORS43011.2019.8956780   DOI
10 Zhou, X.P., Liu, C. and Zhao, K. (2020), "A novel liquid metal sensor with three microchannels embedded in elastomer", Smart Mater. Struct., 29(4), 1-18. https://doi.org/10.1088/1361-665X/ab7433   DOI
11 Kawasetsu, T., Horii, T., Ishihara, H. and Asada, M. (2017), "Size dependency in sensor response of a flexible tactile sensor based on inductance measurement", Proceedings of IEEE Sensors Conference, Glasgow, UK, October. https://doi.org/10.1109/ICSENS.2017.8233908   DOI
12 Shull, K.R. (2002), "Contact mechanics and the adhesion of soft solids", Mater. Sci. Eng. R., 36(1), 1-45. https://doi.org/10.1016/S0927-796X(01)00039-0   DOI
13 Springman, S.M., Nater, P., Chikatamarla, R. and Laue, J. (2002), "Use of flexible tactile pressure sensors in geotechnical centrifuges", Proceedings of International Conference Physical Modelling Geotechnics, Netherlands, January. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15076914
14 Wang, H.B., Kow, J.W., Boer, G.D., Jones, D., Alazmani, A. and Culmer, P. (2017), "A low-cost, high-performance, soft tri-axis tactile sensor based on eddy-current effect", Proceedings of IEEE Sensors Conference, Glasgow, UK, October. https://doi.org/10.1109/ICSENS.2017.8234098   DOI
15 Wong, R.D.P., Posner, J.D. and Santos, V.J. (2012), "Flexible microfluidic normal force sensor skin for tactile feedback", Sens. Actuat. A: Phys., 179, 62-69. https://doi.org/10.1016/j.sna.2012.03.023   DOI
16 Wang, H.B., Lin, Y.B., Li, W. and Feng, Z.H. (2014), "Design of ultrastable and high resolution eddy-current displacement sensor system", Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, October. https://doi.org/10.1109/IECON.2014.7048828   DOI
17 Gao, M. and Gui, L. (2014), "A liquid metal based capacitive microsensor", Proceedings of ASME 12th International Conference, Chicago, IL, USA, August. https://doi.org/10.1115/ICNMM2014-21205   DOI
18 Kawasetsu, T., Horii, T., Ishihara, H. and Asada, M. (2018), "Flexible tri-axis tactile sensor using spiral inductor and magnetorheological elastomer", IEEE Sensors J., 18(14), 5834-5841. https://doi.org/10.1109/JSEN.2018.2844194   DOI
19 Palmer, M.C., O'Rourke, T.D., Olson, N.A., Abdoun, T., Ha, D. and O'Rourke, M.J. (2009), "Tactile pressure sensors for soil-structure interaction assessment", J. Geotech. Geoenviron. Eng., 135(11), 1638-1645. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000143   DOI
20 Rudgers, A.J. (1988), "Equivalent-network representations of the generalized Hooke's law for isotropic materials", J. Acoust. Soc. Am., 83(2), 483-486. https://doi.org/10.1121/1.396142   DOI
21 Shou, Y.D., Zhou, X.P., Chang, Q.P. and Liu, C. (2021), "An innovative liquid metal-based pressure sensor with its application in geotechnical engineering", Smart Struct. Syst., Int. J., 27(1), 89-99. https://doi.org/10.12989/sss.2021.27.1.089   DOI
22 Wang, H.B., Kow, J.W., Raske, N., de Boer, G, Ghajari, M., Hewson, R. and Alazmani, A. (2018), "Robust and high-performance soft inductive tactile sensors based on the Eddy-current effect", Sens. Actuat. A: Phys., 271, 44-52. https://doi.org/10.1016/j.sna.2017.12.060   DOI
23 Wu, J.C., Hu, X.L., Sun, M.J. and Hua, S. (2012), "Research Status and Prospect of Strain Monitoring Method of Geotechnical Engineering", Adv. Mater. Res., 594-597, 532-541. https://doi.org/10.4028/www.scientific.net/AMR.594-597.532   DOI
24 Park, Y.L., Majidi, C., Kramer, R., Brard, P. and Wood, R.J. (2010), "Hyperelastic pressure sensing with a liquid-embedded elastomer", J. Micromech. Microeng., 20(12), 125029. https://doi.org/10.1088/0960-1317/20/12/125029   DOI
25 Qiao, Z.Y. (2021), "Calculation and Simulation of planar spiral inductor based on flexible substrate", Shipboard Electron. Countermeas., 44(1), 116-120. https://doi.org/10.16426/j.cnki.jcdzdk.2021.01.024   DOI
26 Tada, H., Paris, P.C. and Irwin, G.R. (2000), The Stress Analysis of Cracks Handbook, Third Edition, ASME Press, New York, NY, USA.
27 Ryu, D., Loh, K.J., Ireland, R., Karimzada, M., Yaghmaie, F. and Gusman, A.M. (2011), "In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing", Smart Struct. Syst., Int. J., 8(5), 471-486. https://doi.org/10.12989/sss.2011.8.5.471   DOI
28 Shi, X. and Cheng, C.H. (2013), "Artificial hair cell sensors using liquid metal alloy as piezoresistors", Proceedings of the 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou, China, April. https://doi.org/10.1109/NEMS.2013.6559886   DOI
29 Xu, X.M., Soga, K., Nawaz, S., Moss, N., Bowers, K. and Gajia, M. (2015), "Performance monitoring of timber structures in underground construction using wireless SmartPlank", Smart Struct. Syst., Int. J., 15(3), 769-785. https://doi.org/10.12989/sss.2015.15.3.769   DOI
30 Zhou, X.P., Deng, R.S. and Zhu, J.Y. (2018), "Three-layer-stacked pressure sensor with a liquid metal-embedded elastomer", J. Micromech. Microeng., 28(8), 085020. https://doi.org/10.1088/1361-6439/aac13c   DOI
31 Ali, M.M., Narakathu, B.B., Emamian, S., Chlaihawi, A.A., Aljanabi, F., Maddipatla, D., Bazuin, B.J. and Atashbar, M.Z. (2016), "Eutectic Ga-In liquid metal based flexible capacitive pressure sensor", Proceedings of IEEE Sensors Conference, Orlando, FL, USA, October. https://doi.org/10.1109/ICSENS.2016.7808515   DOI
32 Zeng, J. (2018), "Pressure sensor antenna based on liquid metal material and RF technology", Mater Dissertation; Chongqing University, Chongqing, China.
33 Ota, H. (2018), "Liquid-state environment sensors using liquid metal", ECS Trans., 86(16), 31-38. https://doi.org/10.1149/08616.0031ecst   DOI
34 Won, D.J., Baek, S., Kim, H. and Kim, J. (2015), "Arrayed-type touch sensor using micro liquid metal droplets with large dynamic range and high sensitivity", Sens. Actuat. A: Phys., 235, 151-157. https://doi.org/10.1016/j.sna.2015.09.044   DOI