• Title/Summary/Keyword: Spiral Scan

Search Result 46, Processing Time 0.025 seconds

Evaluation of Tracheobronchial Diseases: Comparison of Different Imaging Techniques

  • Qihang Chen;Jin Mo Goo;Joon Beom Seo;Myung Jin Chung;Yu-Jin Lee;Jung-Gi Im
    • Korean Journal of Radiology
    • /
    • v.1 no.3
    • /
    • pp.135-141
    • /
    • 2000
  • Objective: To compare the clinical utility of the different imaging techniques used for the evaluation of tracheobronchial diseases. Materials and Methods: Forty-one patients with tracheobronchial diseases [tuberculosis (n = 18), bronchogenic carcinoma (n = 10), congenital abnormality (n = 3), post-operative stenosis (n = 2), and others (n = 8)] underwent chest radiography and spiral CT. Two sets of scan data were obtained: one from routine thick-section axial images and the other from thin-section axial images. Multiplanar reconstruction (MPR) and shaded surface display (SSD) images were obtained from thin-section data. Applying a 5-point scale, two observers compared chest radiography, routine CT, thin-section spiral CT, MPR and SSD imaging with regard to the detection, localization, extent, and characterization of a lesion, information on its relationship with adjacent structures, and overall information. Results: SSD images were the most informative with regard to the detection (3.95±0.31), localization (3.95±0.22) and extent of a lesion (3.85±0.42), and overall information (3.83±0.44), while thin-section spiral CT scans provided most information regarding its relationship with adjacent structures (3.56±0.50) and characterization of the lesion (3.51±0.61). Conclusion: SSD images and thin-section spiral CT scans can provide valuable information for the evaluation of tracheobronchial disease.

  • PDF

Model-based Gradient Compensation in Spiral Imaging (나선주사영상에서 모델 기반 경사자계 보상)

  • Cho, S.H.;Kim, P.K.;Lim, J.W.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2009
  • Purpose : A method to estimate a real k-space trajectory based on a circuit model of the gradient system is proposed for spiral imaging. The estimated k-space trajectory instead of the ideal trajectory is used in the reconstruction to improve the image quality in the spiral imaging. Materials and Methods : Since the gradient system has self resistance, capacitance, and inductance, as well as the mutual inductance between the magnet and the gradient coils, the generated gradient fields have delays and transient responses compared to the input waveform to the gradient system. The real gradient fields and their trajectory in k-space play an important role in the reconstruction. In this paper, the gradient system is modeled with R-L-C circuits, and real gradient fields are estimated from the input to the model. An experimental method to determine the model parameters (R, L, C values) is also suggested from the quality of the reconstructed image. Results : The gradient fields are estimated from the circuit model of the gradient system at 1.5 Tesla MRI system. The spiral trajectory obtained by the integration of the estimated gradient fields is used for the reconstruction. From experiments, the reconstructed images using the estimated trajectory show improved uniformity, reduced overshoots near the edges, and enhanced resolutions compared to those using the ideal trajectory without model. Conclusion : The gradient system was successfully modeled by the R-L-C circuits. Much improved reconstruction was achieved in the spiral imaging using the trajectory estimated by the proposed model.

  • PDF

Measurement of Patient Dose from Computed Tomography Using Physical Anthropomorphic Phantom (물리적 팬텀을 이용한 CT 촬영 환자의 피폭 선량 측정 및 평가)

  • Jang, Ki-Won;Lee, Choon-Sik;Kwon, Jung-Wan;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.3
    • /
    • pp.113-119
    • /
    • 2005
  • The computed tomogrpahy(CT) provides a high quality in images of human body but contributes to the relatively high patient dose. The frequency of CT examination is increasing and, therefore, the concerns about the patient dose are also increasing. In this study the experimental determination of patient dose was performed by using a physical anthropomorphic phantom and thermoluminescent dosimeter(TLD). The measurements were done for the both axial and spiral scan mode. As a result the effective doses for each scan mode were 17.78mSv and 10.01 mSv respectively and the fact that the degree of the reduction in the patient dose depends on the pitch scan parameter was confirmed. The measurement methods suggested in this study can be applied for the reassessment of the patient dose when the technique in CT equipment is developed or the protocol for CT scanning is changed.

The Treatment of Giant Middle Cerebral Artery Aneurysm with MDS Coil - Case Report - (기계적 분리코일(MDS coil)을 이용한 소아 거대 중대뇌동맥류의 치료)

  • Choi, Gwang-Shik;Kim, Sung-Ho;Bae, Jang-Ho;Kim, O-Lyong;Choi, Byung-Youn;Cho, Soo-Ho;Byun, Woo-Mok
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.237-244
    • /
    • 1997
  • A 14-year old boy was admitted with stuporous mentality. CT scan, MRI and cerebral angiogram revealed SAH and a giant aneurysm of right middle cerebral artery($4{\times}5{\times}5.3cm$). To minimize surgical risk, endovascular treatment was done with MDS(mechanical detachable system)-spiral coil. Follow up MRI showed intraluminal thrombus formation of the aneurysm.

  • PDF

A Case of Left Pulmonary Artery Hypoplasia in Adult (성인에서 발견된 좌측 폐동맥 형성부전증 1례)

  • Lee, Seung-Hyun;Choi, Koang-Ho;Lee, Heung-Bum;Lee, Yong-Chul;Rhee, Yang-Keun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.1
    • /
    • pp.116-121
    • /
    • 1999
  • Unilateral hypoplasia of the pulmonary artery is an uncommon anomaly, which commonly develops in combination with congenital cardiovascular defects such as tetralogy of Fallot, patent ductus arteriosus and septal defect of atrium or ventricle, but may also present as an isolated lesion. We have recently experienced a case of the left pulmonary artery hypoplasia in adult by chance of during the general health screen, which diagnosed by chest X-ray, chest spiral CT, lung perfusion and ventilation scan, digital substraction angiogram and bronchoscopy, then presented hereby with the review of relevant literature.

  • PDF

Volume Change of Spiral Computed Tomography due to the Changed in the Parameters (파라미터의 변경에 따라 나선형 전산화 단층 촬영의 체적 변화)

  • Lee, JunHaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.307-311
    • /
    • 2013
  • This study examined the change of artifact volume by analyzing the level of image change associated with the setting of threshold through 3D imaging in scan parameter(slice thickness and helical pitch) and 3D image reconstruction to explore whether the presence of pathology was fully distinguished when CT was taken by lower dose than the existent dose to reduce exposure. Furthermore, this study attempted to investigate Scan Parameter acceptable in CT to reduce exposure dose. For materials and methods, silicon was used to produce samples. Five spherical samples were produced at 10-millimeter intervals(50, 40, 30, 20, and 10 mm) in diameter and were fixed at 120 Kvp of tube voltage and 50 mA of tube current. Varied slab thickness((1.0, 2.0, 3.0, 5.0, and 7.0mm) and Helical Pitch(1.5, 2.0, 3.0) were scanned. The image at an interval of 1.0, 2.0, 3.0, 5.0, and 7.0mm was transmitted to the workstation. Threshold(-200, -50, 50 ~ 1,000) was changed using the volume rendering technique, 3D image was reconstructed, and artifact volume was measured. In conclusion, 1.5 of Helical Pitch showed the least change of volume and 3.0 of helical pitch showed the greatest reduction of volume change. The experiment suggested that as slice thickness was increased, artifact volume was decreased more than actual measurement. Furthermore, in the 3D image reconstruction, when the range of threshold was set as -200 ~1,000, artifact volume was changed the least. Based on the results, it is expected to have an effect of reducing exposure dose.

Customized Cranioplasty Implants Using Three-Dimensional Printers and Polymethyl-Methacrylate Casting

  • Kim, Bum-Joon;Hong, Ki-Sun;Park, Kyung-Jae;Park, Dong-Hyuk;Chung, Yong-Gu;Kang, Shin-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.6
    • /
    • pp.541-546
    • /
    • 2012
  • Objective : The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. Methods : A total of 16 patients with large skull defects (>100 $cm^2$) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. Results : The median operation time was $184.36{\pm}26.07$ minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Conclusion : Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects.

A Comparative Study on the Lens Dose According to the Change of Shielding Material Used in Brain Computed Tomography (Brain CT에서 차폐 재료 변화에 따른 수정체 선량 비교 연구)

  • Hwang, Incheol;Shin, Woonjae;Gang, Eunbo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • The cases of radiographic inspection for medical diagnosis in Korea have been continuously increasing year after year, which pays particularly more attention to CT which occupies over the half of medical radiation exposure. To find an effective alternative for reducing radiation exposure, the researchers conducted comparative experiments using some shields made of bismuth, aluminum 6mm, and silicone 22mm. These shielding materials have been used to reduce the entrance surface dose (ESD) on lenses, maintaining the CT number, noise, and uniformity in brain CT scanning which forms the largest part in CT scanning these days. These experiments showed that the doses in the spiral scan parallel to IOML and the conventional scan in Bismuth were 26.41% and 17.52%, respectively; in Aluminum 18.24% and 9.39%; in Silicone 19.47% and 14.39% lower than compared with those in the cases without any shields. In the items of the CT number, noise, and uniformity, the bismuth shield satisfied exceedingly the standards of the phantom image test while aluminum and silicone were within. To keep the graphic quality and get good shielding effect, we recommend the silicone shield which can be manufactured and purchased with ease.

High-Speed NMR Imaging by Spiral -Scan Echo Planar Method (나선형 주사 방법에 의한 고속 NMR 영상화 연구)

  • Ahn, C.B.;Rew, C.Y.;Kim, J.H.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1985 no.06
    • /
    • pp.22-25
    • /
    • 1985
  • 본고에서, "나선형 주사 방법에 의한 고속 NMR 영상화" 방법을 제안하고 그에 따른 실험 결과를 보였다. 이것은 2차원 FID 영역을 나선형 궤적으로 스캐닝하며 데이타를 받을 수 있도록 경사 자계 파형 (gradient pulse)을 가하여 빠른 시간에 (수십 msec - 수초)내에 영상 정보를 얻어낸 후, 재구성 알고리즘을 씀으로써 영상을 얻어내는 방법이다. 이 방법의 장점은 첫째로 $T_2$ 감쇄에 의한 PSF (Point Spread Function)가 윈형 대칭으로 주어지므로 영상화 했을때 물체의 구조 식별이 기존의 EPI (Echo Planar Imaging) 방법에 비해서 선명하며, 둘째로 나선형 궤적을 구현하기 의한 경사 자계 파형에서 불연속 점을 없앰과 동시에 파형의 세기가 점차로 증가하는 형태이므로, 기존의, 파형 왜곡에 의해 영상에 미치는 영향을 최소화 할 수가 있으며, 세째로 나선형 스캔을 사이 사이에 끼워 넣는 방법을 씀으로써 해상도를 향상시킬 수가 있다.

  • PDF

Comparative Analysis of Absorption Doses between Exposed and Unexposed Area on Major Organs During CT Scan (전산화 단층촬영시 주선속내 외의 주요장기 흡수선량 비교분석)

  • 사정호;서태석;최보영;정규회
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.59-71
    • /
    • 2000
  • It is possible to obtain a fast CT scan during breath holding with spiral technique. But the risk of radiation is increased due to detailed and repeated scans. However, the limitation of X-ray doses is not fully specified on CT, yet. Therefore, the purpose of the present study is to define the limitation of X-ray doses on CT The CT unit was somatom plus 4. Alderson Rando phantom, Solenoid water phantom, TLD, and reader were used. For determining adequate position and size of organs, the measurement of distance(${\pm}$2mm) from the midline of vertebral body was performed in 40 women(20~40 years). On the brain scan for 8:8(8mm slice thickness, 8mm/sec movement velocity of the table) and 10:10(10mm slice thickness, 10mm/sec movement velocity of the table) methods, the absorption doses of exposed area of the 10:10 were slightly higher than those of 8:8. The doses of unexposed uterus were negligible on the brain scan for both 8:8 and 10:10. On the chest scan for 8:8, 8:10(8mm slice thickness, 10mm/sec movement velocity of the table), 10:10, 10:12(10mm slice thickness, 12mm/sec movement velocity of the table) and 10:15(10mm slice thickness, 15mm/sec movement velocity of the table) methods, 8:8 method of the absorption doses of exposure area was the most highest and 10:15 method was the most lowest. The absorption doses of 8:10 method was relatively lower than those of the other methods. In conclusion, the 8:10 method is the most suitable to give a low radiation burden to patient without distorting image quality.

  • PDF