• Title/Summary/Keyword: Spinel structure

Search Result 289, Processing Time 0.03 seconds

Mössbauer Study of Crystallographic and Magnetic Properties in Vanadium Ferrite(VxFe3-xO4) Thin Films (바나듐 페라이트 박막의 결정구조 및 자기적 성질에 관한 뫼스바우어 분광학적 연구)

  • Park, Jae-Yun;Kim, Kwang-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2008
  • The mixed ferrite $V_xFe_{3-x}O_4$(x=0.0, 0.15, 0.5, 1.0) thin films were prepared by sol-gel method. Their crystallographic and magnetic hyperfine properties have been studied using X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). The crystal structure is found to be cubic spinel throughout the series($x{\leq}1.0$), and the lattice parameter $a_0$ increases linearly with increasing V content. XRD, XSP and CEMS indicate that $V^{3+}$ substitution for $Fe^{3+}$ in B-site is superior to $V^{2+}$ substitution for $Fe^{2+}$ in B-site. It is noticeable that both quadrupole shift and hyperfine field decreases with increasing V composition, suggesting the change of local symmetry and accompanying line-broadening. The line-broadening on CEMS spectra can be explained by the distribution of magnetic hyperfine fields.

Mössbauer Studies of Manganese Iron Oxide Nanoparticles (망간-철산화물 나노입자의 뫼스바우어 분광 연구)

  • Hyun, Sung-Wook;Shim, In-Bo;Kim, Chul-Sung;Kang, Kyung-Su;Park, Chu-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • We have prepared $MnFe_2O_4$ nanoparticles with polyol method. The crystallographic and magnetic properties were measured by using X-ray diffraction(XRD), vibrating sample magnetometer(VSM) and $M\"{o}ssbauer$ spectroscopy. The high resolution transmission electron microscope(HRTEM) shows uniform nanoparticle-sizes with $6{\sim}8$ nm. The crystal structure is found to be single-phase cubic spinel with space group of Fd3m. The lattice constant of $MnFe_2O_4$ nanparticles is determined to be $8.418{\pm}0.001{\AA}$. $M\"{o}ssbauer$ spectrum of $MnFe_2O_4$ nanparticles at room temperature(RT) shows a superparamagnetic behavior. In VSM analysis, the diagnosis of the superparamagnetic behavior is also shown in hysteresis loop at RT. $M\"{o}ssbauer$ spectrum at 4.2K shows that the well developed two sextets are with different hyperfine field $H_{hfA}=498$(A-site) and $H_{hfB}=521$(B-site) kOe.

CEMS Study of Ferrite Films M0.2Fe2.8O4 (M =Mn, Ni, Cu) (페라이트 박막 M0.2Fe2.8O4(M=Mn, Ni, Cu)의 Mössbauer 분광학적 연구)

  • Park, Jae Yun;Kim, Kwang Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.46-50
    • /
    • 2014
  • The crystallographic properties and cationic distribution of $M_{0.2}Fe_{2.8}O_4$ (M =Mn, Ni, Cu) and $Fe_3O_4$ thin films prepared by sol-gel method have been investigated by X-ray diffraction (XRD) and conversion electron M$\ddot{o}$ssbauer spectroscopy (CEMS). The ionic valence, preferred site, and hyperfine field of Fe ions of the ferrites could be obtained by analyzing the CEMS spectra. The $M_{0.2}Fe_{2.8}O_4$ films were found to maintain cubic spinel structure as in $Fe_3O_4$ with the lattice constant slightly decreased for Ni substitution and increased for Mn and Cu substitution from that of $Fe_3O_4$. Analyses on the CEMS data indicate that $Mn^{2+}$ and $Ni^{2+}$ ions substitute octahedral $Fe^{2+}$ sites mostly, while $Cu^{2+}$ ions substitute both the octahedral and tetrahedral sites. The observed intensity ratio $A_B/A_A$ of the CEMS subspectra of the samples exhibited difference from the theoretical value. It is interpreted as due to the effect of the M substitution for A and B on the Debye temperature of the site. The relative line-broadening of the B-site CEMS subspectra can be explained by the dispersion of magnetic hyperfine fields due to random distribution of M cations in the B sites.

Electrochemical Analysis of CuxCo3-xO4 Catalyst for Oxygen Evolution Reaction Prepared by Sol-Gel Method (Sol-Gel법을 이용한 CuxCo3-xO4 산소 발생 촉매의 합성 및 전기화학 특성 분석)

  • Park, Yoo Sei;Jung, Changwook;Kim, Chiho;Koo, Taewoo;Seok, Changgyu;Kwon, Ilyeong;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.92-96
    • /
    • 2019
  • Transition metal oxide is widely used as a water electrolysis catalyst to substitute for a noble metal catalyst such as $IrO_2$ and $RuO_2$. In this study, the sol-gel method is used to synthesize the $Cu_xCo_{3-x}O_4$ catalyst for the oxygen evolution reaction (OER),. The CuxCo3-xO4 is synthesized at various calcination temperatures from $250^{\circ}C$ to $400^{\circ}C$ for 4 h. The $Cu_xCo_{3-x}O_4$ synthesized at $300^{\circ}C$ has a perfect spinel structure without residues of the precursor and secondary phases, such as CuO. The particle size of $Cu_xCo_{3-x}O_4$ increases with an increase in calcination temperature. Amongst all the samples studied, $Cu_xCo_{3-x}O_4$, which is synthesized at 300?, has the highest activity for the OER. Its onset potential for the OER is 370 mV and the overpotential at $10mA/cm^2$ is 438 mV. The tafel slope of $Cu_xCo_{3-x}O_4$ synthesized at $300^{\circ}C$ has a low value of 58 mV/dec. These results are mainly explained by the increase in the available active surface area of the $Cu_xCo_{3-x}O_4$ catalyst.

Electromagnetic wave absorption characteristics in Ni-Mn-Zn Ferrite with varying Mn content and applied magnetic field (Ni-Mn-Zn ferrite의 합성과 Mn의 치환량 및 인가자장에 따른 전자기파 흡수 특성 연구)

  • Ji-Hye Lee;Sang-Min Lee;Young-Min Kang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.294-302
    • /
    • 2023
  • Ni-Mn-Zn ferrite, Ni0.5-xMnxZn0.5Fe2O4 (0 ≤ x ≤ 0.5), was synthesized using the sol-gel method to investigate the crystal structure, microstructure, magnetic properties, high-frequency characteristics, and electromagnetic (EM) wave absorption characteristics as a function of Mn substitution. As the Mn content increased, a continuous decrease in saturation magnetization (MS) was observed with little change in coercivity (HC). Samples for each composition (x) exhibited strong EM wave absorption performance with first and second strong EM wave absorption regions satisfying minimum reflection loss, RLmin < -40 dB in the 1.5~2.5, 6~11 GHz range, respectively. The EM wave absorption in Ni-Mn-Zn ferrite depends on magnetic loss, and adjusting µ' and µ'' spectra by Mn substitution or H field allows control of the EM wave absorption frequency.

Study on LiFePO4 Composite Cathode Materials to Enhance Thermal Stability of Hybrid Capacitor (하이브리드 커패시터의 열안정성 개선을 위한 LiFePO4 복합양극 소재에 관한 연구)

  • Kwon, Tae-Soon;Park, Ji-Hyun;Kang, Seok-Won;Jeong, Rag-Gyo;Han, Sang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.242-246
    • /
    • 2017
  • The application of composite cathode materials including $LiFePO_4$ (lithium iron phosphate) of olivine crystal structure, which has high thermal stability, were investigated as alternatives for hybrid battery-capacitors with a $LiMn_2O_4$ (spinel crystal structure) cathode, which exhibits decreased performance at high temperatures due to Mn-dissolution. However, these composite cathode materials have been shown to have a reduction in capacity by conducting life cycle experiments in which a $LiFePO_4$/activated carbon cell was charged and discharged between 1.0 V and 2.3 V at two temperatures, $25^{\circ}C$ and $60^{\circ}C$, which caused a degradation of the anode due to the lowered voltage in the anode. To avoid the degradation of the anode, composite cathodes of $LiFePO_4/LiMn_2O_4$ (50:50 wt%), $LiFePO_4$/activated carbon (50:50 wt%) and $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (50:50 wt%) were prepared and the life cycle experiments were conducted on these cells. The composite cathode including $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ of layered crystal structure showed stable voltage behavior. The discharge capacity retention ratio of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was about twice as high as that of a $LiFePO_4/LiMn_2O_4$ cell at thermal stability experiment for a duration of 1,000 hours charged at 2.3 V and a temperature of $80^{\circ}C$.

Synthesis and Electrochemical Properties of Carbon Coated Li4Ti5O12 using PVC (PVC를 원료로 탄소코팅한 Li4Ti5O12의 합성 및 전기화학적 특성)

  • Hyun, Si-Cheol;Na, Byung-Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • In this study, $Li_4Ti_5O_{12}$ anode materials for lithium ion battery were synthesized by dry ball-mill method. Polyvinyl chloride (PVC) as a carbon source was added to improve electrochemical properties. When the PVC was added after $Li_4Ti_5O_{12}$ formation, the spinel structure was well synthesized and it was confirmed by X-ray diffraction (XRD) experiments. When the carbon material was added before the synthesis and the heat treatment was performed, it was confirmed that a material having a different crystal structure was synthesized even when a small amount of carbon material was added. In the case of $Li_4Ti_5O_{12}$ without the carbon material, the electrical conductivity value was about $10{\mu}S\;m^{-1}$, which was very small and similar to that of the nonconductor. As the carbon was added, the electrical conductivity was greatly improved and increased up to 10,000 times. Electrochemical impedance spectroscopy (EIS) analysis showed that the size of semicircle corresponding to the resistance decreased with the carbon addition. This indicates that the resistance inside the electrode is reduced. According to the Cyclic voltammetry (CV) analysis, the potential difference between the oxidation peak and the reduction peak was reduced with carbon addition. This means that the rate of lithium ion insertion and deinsertion was increased. $Li_4Ti_5O_{12}$ with 9.5 wt% PVC added sample showed the best properties in rate capabilities of $180mA\;h\;g^{-1}$ at 0.2 C-rate, $165mA\;h\;g^{-1}$ at 0.5 C-rate, and $95.8mA\;h\;g^{-1}$ at 5 C-rate.

Characterisitics of Redox Reaction of the Magnetite Powder Prepared by Hydrothermal Synthesis (수열합성법으로 합성된 마그네타이트 분말에 대한 산화.환원 특성)

  • Park, Sung Youl;Kang, Min Pil;Rhee, Young Woo;Nam, Sung Chan
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.751-755
    • /
    • 2005
  • Carbon dioxide, included in the flue gas from the combustion of fossil fuel, was known as a representative green house gas and various removal and utilization technologies of it has been studied for the prevention of global warming. This study was performed as an effort to find out a method to reuse carbon dioxide separated from flue gas by magnetite powder. Magnetite powder was synthesized using various oxidizers and alkalinity controlled aqueous solutions of $FeSO_4{\cdot}7H_2O$ and NaOH at 50, 80, 90, $100^{\circ}C$ and analyzed by XRD and SEM. The analysis results showed that magnetite powder synthesized at higher alkalinity and temperature had crystalline spinel and cubic structure. The reduction by hydrogen and the oxidation by carbon dioxide of synthesized powder were studied by TGA. The results showed that magnetite powder synthesized at low alkalinity and temperature was non-cubical amorphous but crystalline and cubical at high alkalinity and temperature. Comparing magnetite powders synthesized using oxidants(air and oxygen) and nitrogen, magnetite powder using more oxygen containing oxidant synthesized more crystalline magnetite powder. The experimental results of redox reaction of the synthesized magnetite powder showed that the reduction by hydrogen and the oxidation by carbon dioxide were seldom observed below $400^{\circ}C$ and observed well at $500^{\circ}C$. Magnetite powder synthesized at $100^{\circ}C$ and alkalinity(molal concentration ratio of $FeSO_4{\cdot}7H_2O$ to NaOH) of 2.0 using $O_2$ showed the highest reduction of 27.15 wt% and oxidation of 26.73 wt%, especially at reaction temperature of $500^{\circ}C$.

Hydrothermal Synthesis of Kaolinite and Change of Its Properties (캐올리나이트의 수열합성 및 특성변화)

  • Jang, Young-Nam;Ryu, Gyoung-Won;Chae, Soo-Chun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.241-248
    • /
    • 2009
  • Kaolinite was synthesized from amorphous $SiO_2$ and $Al(OH)_3{\cdot}xH_{2}O$ as starting materials by hydrothermal reaction conducted at $250^{\circ}C$ and $30\;kg/cm^2$. The acidity of the solution was adjusted at pH 2. The synthesized kaolinite was characterized by XRD, IR, NMR, FE-SEM, TEM and EDS to clarify the formational process according to the reaction time from 2 to 36 hours. X-ray diffraction patterns showed after 2 h of reaction time, the starting material amorphous $Al(OH)_3{\cdot}xH_{2}O$ transformed to boehmite (AlOOH) and after the reaction time 5 h, the peaks of boehmite were observed to be absent thereby indicating the crystal structure is partially destructed. Kaolinite formation was identified in the product obtained after 10 h of reaction and the peak intensity of kaolinite increased further with reaction time. The results of TGA and DTA revealed that the principal feature of kaolinite trace are well resolved. TGA results showed 13 wt% amount of weight loss and DTA analysis showed that exothermic peak of boehmite observed at $258^{\circ}C$ was decreased gradually and after 10 h of reaction time, it was disappeared. After 5 h of the reaction time, the exothermicpeak of transformation to spinel phase was observed and the peak intensiy increased with reaction time. The results of FT-IR suggested a highly ordered kaolinite was obtained after 36 hours of reaction. It was identified by the characteristic hydroxide group bands positioned at 3,696, 3670, 3653 and $3620\;cm^{-1}$. The development of the hydroxyl stretching between 3696 and $3620\;cm^{-1}$, depends on the degree of order and crystalline perfection. TEM results showed that after 15 h reaction time, curved platy kaolinite was observed as growing of (001) plane and after 36 h, the morphology of synthetic kaolinite exhibited platy crystal with partial polygonal outlines.