Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.2.92

Electrochemical Analysis of CuxCo3-xO4 Catalyst for Oxygen Evolution Reaction Prepared by Sol-Gel Method  

Park, Yoo Sei (School of Materials Science and Engineering, Pusan National University)
Jung, Changwook (School of Materials Science and Engineering, Pusan National University)
Kim, Chiho (School of Materials Science and Engineering, Pusan National University)
Koo, Taewoo (School of Materials Science and Engineering, Pusan National University)
Seok, Changgyu (School of Materials Science and Engineering, Pusan National University)
Kwon, Ilyeong (School of Materials Science and Engineering, Pusan National University)
Kim, Yangdo (School of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.29, no.2, 2019 , pp. 92-96 More about this Journal
Abstract
Transition metal oxide is widely used as a water electrolysis catalyst to substitute for a noble metal catalyst such as $IrO_2$ and $RuO_2$. In this study, the sol-gel method is used to synthesize the $Cu_xCo_{3-x}O_4$ catalyst for the oxygen evolution reaction (OER),. The CuxCo3-xO4 is synthesized at various calcination temperatures from $250^{\circ}C$ to $400^{\circ}C$ for 4 h. The $Cu_xCo_{3-x}O_4$ synthesized at $300^{\circ}C$ has a perfect spinel structure without residues of the precursor and secondary phases, such as CuO. The particle size of $Cu_xCo_{3-x}O_4$ increases with an increase in calcination temperature. Amongst all the samples studied, $Cu_xCo_{3-x}O_4$, which is synthesized at 300?, has the highest activity for the OER. Its onset potential for the OER is 370 mV and the overpotential at $10mA/cm^2$ is 438 mV. The tafel slope of $Cu_xCo_{3-x}O_4$ synthesized at $300^{\circ}C$ has a low value of 58 mV/dec. These results are mainly explained by the increase in the available active surface area of the $Cu_xCo_{3-x}O_4$ catalyst.
Keywords
$Cu_xCo_{3-x}O_4$; sol-gel; oxygen evolution reaction(OER);
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. W. Koo, C. S. Park and Y. D. Kim, J. Korean Phys. Soc., 67, 1558 (2015).   DOI
2 Y. S. Park, C. S. Park, C. H. Kim and Y. D. Kim, J. Korean Phys. Soc., 69, 1187 (2016).   DOI
3 G. B. Barbi, J. P. Santos, P. Serrini, P. N. Gibson, M. C. Horrillo and L. Manes, Sens. Actuators, B, 25, 559 (1995).   DOI
4 B. Lal, N. K. Singh, S. Samuel and R. N. Singh, J. New Mater. Electrochem. Syst., 2, 59 (1999).
5 Q. Zhang, Z. D. Wei, C. Liu, X. Liu, X. Q. Qi, S. G. Chen, W. Ding, Y. Ma, F. Shi and Y. M. Zhou, Int. J. Hydrogen Energy, 37, 822 (2012).   DOI
6 A. Marshall, B. Boresen, G. Hagen, M. Tsypkin and R. Tunold, Mater. Chem. Phys., 94, 226 (2005).   DOI
7 T.-Y. Wei, C.-H. Chen, H.-C. Chisen, S.-Y. Lu and C.- H. Hu, Adv. Mater., 22, 347 (2010).   DOI
8 M. De Koninck, S. C. Poirier and B. Marsan, J. Electrochem. Soc., 153, A2103 (2006).   DOI
9 T. A. F Lassali, J. F. C Boodts and L. O. S. Bulhoes, J. Non-Cryst. Solids, 273, 129 (2000).   DOI
10 Y. C. Liu, J. A. Koza and J. A. Switzer, Electrochimica Acta, 140, 359 (2014).   DOI
11 T. Reier, M. Oezaslan and P. Strasser, ACS Catal., 2, 1765 (2012).   DOI
12 E. Locke, S. Jiang and S. Beaumont, Top. Catal., 61, 977 (2018).   DOI
13 M. K. Datta, K. Kadakia, O. I. Velikokhatnyi, P. H. Jampani, S. J. Chung, J. A. Poston and A. Manivannan, J. Mater. Chem. A, 1, 4026 (2013).   DOI
14 W. Xu and K. Scott, J. Mater. Chem., 21, 12344 (2011).   DOI
15 M. Carmo, D. L. Fritz, J. Mergel and D. Stolten, Int. J. Hydrogen Energy, 38, 4091 (2013).
16 C. Bocca, A. Barbucci, M. Delucchi and G. Cerisola, Int. J. Hydrogen Energy, 24, 21 (1999).   DOI
17 X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen and S. Yang, Angew. Chem., 126, 7714 (2014).   DOI
18 W. S. Choi, M. J. Jang, Y. S. Park, K. H. Lee, J. Y. Lee, M. H. Seo and S. M. Choi, ACS Appl. Mater. Interfaces, 10, 38663 (2018).   DOI
19 M. Hamdani, R. N. Singh and P. Chartier, Int. J. Electrochem. Sci., 5, 556 (2010).
20 I. Nikolov, R. Darkaoui, E. Zhecheva, R. Stoyanova, N. Dimitrov and T. Vitanov, J. Electroanal. Chem., 429, 157 (1997).   DOI
21 M. D. Koninck, S. C. Poirier and B. Marsan, J. Electrochem. Soc., 154, A381 (2007).   DOI