• 제목/요약/키워드: Spindle displacement

검색결과 89건 처리시간 0.026초

소형 태핑센터 주축의 열특성 및 주파수 분석 (Thermal Characteristics and Frequency Analysis of a High Speed Spindle for Small Tapping Center)

  • 최대봉;김수태;노승국;조현택
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.105-111
    • /
    • 2012
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used for the high speed machine tools. The important problem in high speed spindle is to minimize the thermal effect by motor and bearing and frequency effect. This paper presents the thermal characteristic analysis and frequency experiment for a high speed spindle considering the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil cooling jacket and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. To find out the characteristic of vibration, the high speed spindle is excited in operational range. This result can be applied to the design and manufacture of a high speed tapping spindle.

원통형 변위센서를 장착한 능동 공기 베어링에 관한 연구 (A Study on the Actively Controlled Aerostatic Journal Bearing using Cylindrical Capacitance Displacement Sensor)

  • 박상신;김규하
    • Tribology and Lubricants
    • /
    • 제24권1호
    • /
    • pp.34-43
    • /
    • 2008
  • In this paper, an actively controlled aerostatic bearing is studied to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled aerostatic bearing is composed of aerostatic bearings, non-contact type of displacement sensors, piezoelectric actuators and controllers. The cylindrical capacitance sensor (CCS) is used as the displacement sensor. The reason for using CCS instead of the commercial gap sensor is that it can give us the pure error motion of the spindle because it removes the roundness error or the geometric errors in the spindle. The controller is designed by the state space equation and quadratic optimal control theory. The characteristic data of the actively controlled aerostatic bearing system in the frequency domain are presented and the stiffness and damping coefficients of the bearing are mentioned. This paper shows the possibility to reduce the motion error up to 6000 rpm.

연삭숫돌 주축 및 공작물 회전체 진동을 고려한 원통 연삭 가공의 동특성 해석 (Dynamic Analysis of External Cylindrical Grinding Considering Spindle and Workpiece Vibrations)

  • 최상현;김덕현;안유민
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.192-198
    • /
    • 2000
  • This paper presents multi degree analysis of self-exited vibration of grinding system including spindle and workpiece rotational effect. The governing equations are derived by applying the finite element method to structure of spindle and workpiece rotor and by estimating the grinding force. Vibration analysis is carried out for external cylindrical plunge grinding. Displacement of workpiece and grinding force is simulated with machining time. Using this model, effects of characteristics of spindle bearing and major grinding conditions on chatter growth rate are predicted. Some of results are compared with those of other previous model and show good agreements.

  • PDF

광파이버 변위 센서를 적용한 자기베어링 정적 부상 제어 연구 (A Study on the Static Levitation Control of Magnetic Bearing using Optical Fiber Displacement Sensors)

  • 강종규;신우철;홍준희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.131-136
    • /
    • 2003
  • Five expensive sensors are necessary to control a magnetic bearing system. The sensor price rate of magnetic bearing system is high. So it is necessary that cheap and good sensor is developed. The optical fiber displacement sensor is adaptive to satisfy this condition. We can design magnetically suspended spindle based on static characteristic of optical fiber displacement sensor developed. The controller can be designed by decoupled feedback PD. Therefore, it is simpler than any other controller comparatively.

  • PDF

고속주축의 냉각조건과 후반부 냉각 유무에 따른 열특성 연구 (A Study on the Thermal Characteristics of a High Speed Spindle according to the Cooling Existence of Rear Part and the Cooling Conditions)

  • 최대봉;김수태;이석준;김창용
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.50-55
    • /
    • 2012
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and bearing. This paper presents the thermal characteristic analysis for a high speed spindle with and without cooling at the rear part, considering the viscosity and the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil jacket cooling and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. This result can be applied to the design and manufacture of a high speed motor spindle.

고속 연삭기용 유정압 스핀들 개발에 관한 연구 (A Study on the Development of Hydrostatic High Speed Spindle for Grinding Machine)

  • 김정석;조용권;박진효;문홍만
    • 한국생산제조학회지
    • /
    • 제20권1호
    • /
    • pp.96-100
    • /
    • 2011
  • The hydrostatic bearings have a relatively small run-out comparing to its shape error by fluid film effect in hydrostatic state as like pneumatic bearing and have a high stiffness, load capacity and damping characteristics. As there is no maintenance and semipermanent in these bearing type, it has been usually adopted as main spindle bearing for grinding machine. In this thesis, to develop hydrostatic bearing for high speed spindle, the cooler setting temperature, bearing clearance and nozzle pressure of belt-driven hydrostatic bearing are investigated. The bearing temperature is decreased, as the cooler setting temperature is lower, nozzle pressure is higher and bearing clearance is wider. The front temperature of bearing is nearly $8^{\circ}C$ higher than the rear one up to 13,000 rpm of spindle revolution. The thermal deflection of X-axis is ${\pm}16\;{\mu}m$ in range of 12,000 rpm-13,000 rpm. Therefore, it is conformed that the built-in motor hydrostatic bearing can be used to high speed spindle.

다구찌 방법을 이용한 고속주축의 강성 개선 (Improvement of a Stiffness for High-Speed Spindle Using the Taguchi Method)

  • 임정숙;정원지;이춘만;이정환
    • 한국정밀공학회지
    • /
    • 제24권2호
    • /
    • pp.127-133
    • /
    • 2007
  • The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. To improve the competition power of price to quality, spindle design is very important. Because it possesses over 10 percent of machine tool's price. The latest machine tools have rotational frequency and excellent about might and precision cutting. So it requires static and dynamic strength in the load aspect. In conclusion, the deformation of the spindle end have to extremely small displacement in static and dynamic load. In this study, On the assumption that the bearings that are supporting 24,000rpm high-speed spindle are selected in the most optimum condition, the natural frequency and deformation of the spindle end is obtained by FEM mode analysis. The Taguchi Method was used to draw optimized condition of bearing position and it's stiffness.

볼스크류 가공용 선회형 스핀들의 발열 특성에 관한 연구 (Heat Generation Characteristics of Whirling Spindle for Ball Screw Machining)

  • 문홍만;김상원;정호인;이춘만
    • 한국기계가공학회지
    • /
    • 제19권10호
    • /
    • pp.44-51
    • /
    • 2020
  • We studied the heating characteristics of a whirling spindle. This spindle is an important component of a whirling machine for turning a ball screw shaft. In the manufacturing process for a conventional ball screw shaft, a single tool is used to form a spiral in a lathe machine tool. Thereafter, a high-frequency heat treatment process is performed. Recently, a whirling-type cutting method has emerged. This method can perform hard turning in the rotating direction of the spiral portion of the ball screw shaft by rotating and mounting multiple tools. The whirling method can be applied to the heat-treated material. In this study, an experimental apparatus was constructed to analyze the whirling spindle. The experiment proceeded in four steps. The rotating speed of the whirling spindle was set to ISO random and sequential rising conditions. Cooling and non-cooling modes in the cooling jacket were tested. As a result of the above experiment, the heating characteristics of the whirling spindle were derived.

A Study on the Influence of Nonlinearity Coefficients in Air-Bearing Spindle Parametric Vibration

  • Chernopyatov, Y.A.;Lee, C.M.;Chung, W.J.;Dolotov, K.S.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권1호
    • /
    • pp.51-58
    • /
    • 2005
  • The development of the high-efficiency machine-tools equipment and new cutting tool materials with high hardness, heat- and wear-resistance has opened the way to application of high-speed cutting process. The basic argument of using of high-speed cutting processes is the reduction of time and the respective increase of machining productivity. In this sense, the spindle units may be regarded as one of the most important units, directly affecting many parameters of high-speed machining efficiency. One of the possible types of spindle units for high-speed cutting is the air-bearing type. In this paper, we propose the mathematical model of the dynamic behavior of the air-bearing spindle. To provide the high-level of speed capacity and spindle rotation accuracy we need the adequate model of "spindle-bearings" system. This model should consider characteristics of the interactions between system components and environment. To find the working characteristics of spindle unit we should derive the equations of spindle axis movement under the affecting factors, and solve these equations together with equations which describe the behavior of lubricant layer in bearing (bearing stiffness equations). In this paper, the three influence coefficients are introduced, which describe the center of spindle mass displacement, angle of shaft rotation around the axes under the unit force application and that under the unit torque application. These coefficients are operated in the system of differential equations, which describes the spindle axis spatial movement. This system is solved by Runge-Kutta method. Obtained trajectories and amplitude-frequency characteristics were then compared to experimental ones. The analysis shows good agreement between theoretical and experimental results, which confirms that the proposed model of air-bearing spindle is correctis correct