• Title/Summary/Keyword: Spin-up

Search Result 268, Processing Time 0.023 seconds

Magnetoresistance of Co/Cu/Co Spin Valve Sandwiches

  • Park, S. J.;Park, K. L.;Kim, M. Y.;j. R. Rhee;D. G. Hwang;Lee, S. S.;Lee, k. A.;Park, C. M.
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 1997
  • The dependence of magnetoresistance (MR) ratio on various variables like the thickness of the second Co layer, on the presence of cap layer, on deposition field (Hdep) and on annealing in Co/Cu/Co sandwiches was investigated. Spin-valve sandwiches were deposited on the corning glass by means of the 3-gun dcmagnetron sputtering at a 5 mTorr partial Ar pressure and room temperature. The deposition field was varied from 70 Oe to 720 Oe. The MR curve was measured by the four-terminal method with applied magnetic field up to 1000 Oe perpendicular to the direction of a current in the film plne. The MR ratio of glass/Fe(50${\AA}$)/Co(17${\AA}$)/Cu(24${\AA}$)/Cot(${\AA}$) fabricated by making 50 ${\AA}$ of Fe buffer layer has the maximum value of 8.2% when the thickness of the second Co layer was 17${\AA}$and the deposition field was 350 Oe. In the case of glass/Fe(50${\AA}$)/Co(17${\AA}$)/Cu(24${\AA}$)/Cot(${\AA}$) with Cu cap layer on top, the decrease in the MR ratio seemed to relate with the oxidation of the second Co layer. Samples prepared with deposition field showed greater MR ratios through the formation of more complete spin valve films. After annealing for 2 hours at 300$^{\circ}C$, the MR ratio of the samples prepared with deposition field decreased rapidly while the MR raito of the sample prepared without the field remained.

  • PDF

A Proactive Dissemination Protocol using Residual Energy and Signal Strength for WSNs (무선 센서 네트워크에서 에너지 잔량과 신호세기를 이용한 데이터 전송 프로토콜)

  • Park, Soo-Yeon;Kim, Moon-Seong;Jeong, Eui-Hoon;Bang, Young-Cheo
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.33-39
    • /
    • 2010
  • In this paper, a data dissemination protocol that transmits data collected for Wireless Sensor Networks (WSNs) is newly proposed, and the proposed proactive protocol takes into account energy consumption minimized and delay time disseminated. The well-known SPMS (Shortest Path Mined SPIN) forms the shortest path-based routing table obtained by Bellman Ford Algorithm (BFA) and disseminates data using a multi-hop path in order to minimize energy consumption. The mentioned properties of SPMS cause memory burden to create and maintain the routing tables. In addition, whenever BFA is executed, it is necessary to suffer from the energy consumption and traffic occurred. In order to overcome this problem, a proactive dissemination protocol using Residual Energy and Signal Strength, called RESS, is proposed in this paper. Simulation results show that RESS outperforms SPMS up to 84% in terms of the number of traffic messages and the transmitted delay time of RESS is similar to that of SPMS using the shortest path.

Application of Chemical Probes to Detect Superoxide Anion and Singlet Oxygen in Biological Systems during Gamma Irradiation

  • Lee, Min Hee;Cho, Eun Ju;Kim, Ji Hong;Kim, Ji Eun;Chung, Byung Yeoup;Cho, Jae-Young;Lee, Kang-Soo;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.221-225
    • /
    • 2011
  • To detect superoxide anion ($O_2{\cdot}^-$) or singlet oxygen ($^1O_2$) in biological systems during gamma irradiation, specific chemical probes, 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron) or 2,2,6,6-tetramethyl-piperidine (TEMP), were evaluated. Tiron or TEMP spin adducts was structurally stable in aqueous solution during gamma irradiation up to 500 or 1,000 Gy, respectively. The signal of Tiron semiquinone radical, a spin adduct of Tiron upon reaction with $O_2{\cdot}^-$, was slightly increased by gamma irradiation. This trend was dose-dependently manifested in $O_2$-saturated aqueous solution using nitro blue tetrazolium (NBT), a common probe for both hydrated electron ($e{^-}_{aq}$) and $O_2{\cdot}^-$. In contrast, a spin adduct of TEMP, was never inducible by gamma irradiation, while its signal was substantially enhanced by photosensitization of riboflavin. These results suggest that Tiron and NBT or TEMP could be utilized to detect $O_2{\cdot}^-$ or $^1O_2$ in biological systems during gamma irradiation, although $O_2{\cdot}^-$ or $^1O_2$ are not the main reactive oxygen species produced by water radiolysis.

Spin-coated ultrathin multilayers and their micropatterning using microfluidic channels

  • Hongseok Jang;Kim, Sangcheol;Jinhan Cho;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • A new method is introduced to build up organic/organic multilayer films composed of cationic poly(allylamine hydrochloride) (PAH) and negatively charged poly (sodium 4-styrenesulfonate) (PSS) using the spinning process. The adsorption process is governed by both the viscous force induced by fast solvent elimination and the electrostatic interaction between oppositely charged species. On the other hand, the centrifugal and air shear forces applied by the spinning process significantly enhances desorption of weakly bound polyelectrolyte chains and also induce the planarization of the adsorbed polyelectrolyte layer. The film thickness per bilayer adsorbed by the conventional dipping process and the spinning process was found to be about 4 ${\AA}$ and 24 ${\AA}$, respectively. The surface of the multilayer films prepared with the spinning process is quite homogeneous and smooth. Also, a new approach to create multilayer ultrathin films with well-defined micropatterns in a short process time is Introduced. To achieve such micropatterns with high line resolution in organic multilayer films, microfluidic channels were combined with the convective self-assembly process employing both hydrogen bonding and electrostatic intermolecular interactions. The channels were initially filled with polymer solution by capillary pressure and the residual solution was then removed by the .spinning process.

CLOSE ENCOUNTERS BETWEEN A NEUTRON STAR AND A MAIN-SEQUENCE STAR

  • LEE HYUNG MOK;KIM SUNG S.;KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.1
    • /
    • pp.19-30
    • /
    • 1996
  • We have examined consequences of strong tidal encounters between a neutron star and a normal star using SPH as a possible formation mechanism of isolated recycled pulsars in globular clusters. We have made a number of SPH simulations for close encounters between a main-sequence star of mass ranging from 0.2 to 0.7 $M_\bigodot$ represented by an n=3/2 poly trope and a neutron star represented by a point mass. The outcomes of the first encounters are found to be dependent only on the dimensionless parameter $\eta'{\equiv}(m/(m+ M))^{1/2}(\gamma_{min}/R_{MS})^{3/2}(m/M)^{{1/6)}$, where m and M are the mass of the main-sequence star and the neutron star, respectively, $\gamma_{min}$ the minimum separation between two stars, and $R_{MS}$ the size of the main-sequence star. The material from the (at least partially) disrupted star forms a disk around the neutron star. If all material in the disk is to be acctreted onto the neutron star's surface, the mass of the disk is enough to spin up the neutron star to spin period of 1 ms.

  • PDF

Theoretical and Experimental Study on a Spin-Stabilized Spherical Rocket (Spin 안정형 구형 로켓트에 관한 이론 및 실험적 연구)

  • Yi, Chong-Hoon
    • Journal of the military operations research society of Korea
    • /
    • v.3 no.1
    • /
    • pp.83-96
    • /
    • 1977
  • The combustion chamber and nozzle of an end burning, small spherical rocket is designed. A spherical external shape has a number of advantages such as fixed center-of-gravity and minimum aerodynamic precession torques during flight and a better mass distribution for gyro-stabilization as contrasted to a conventional ogive rocket shape. It is shown that the cross-sectional variation of the end burning solid propellant with length is an exponential geometry to provide a constant thrust-weight ratio of the rocket device during the propellant burning period, and that the factors which affect the attainment of the constant relationship of thrust to weight in the design are the initial propellant area, initial weight of the rocket and propellant density. The measurement of the transient thrust in the ground static test using black powder propellant supports the predicted results. A wind tunnel having a $30{\times}30{\times}75cm$ test section and Mach number 0.11 is constructed, and a simple balance-type device is designed for the measurement of the drag of a spinning sphere. The experimental results indicate that the. spinning has no effect on the magnitude of the drag up to the Reynolds number $3{\times}10^5$. Numerical computation of the flight trajectories for various launching angles is presented, and the gyro-stabilization of spinning sphere is discussed.

  • PDF

Study on the Design and Fabrication of Traveling-Wave Ti:LiNbO$_3$Phase Optical Modulators (진행파형 Ti:LiNbO$_3$위상 광변조기 설계 및 제작에 관한 연구)

  • 정홍식;서정하;엄진섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1782-1792
    • /
    • 1994
  • Ti : $LiNbO_3$ traveling-wave phase optical modulators at wavelength 1.3㎛ have been designed and fabricated, focusing on the optical waveguide and asymmetric coplanar electrode structure. To improve the phase-mismatch of traveling-wave ACPS electrode, the characteristic impedance, effective microwave index, and electrode loss have been presented as a function of geometric parameters including electrode and buffer layer thickness. Low-loss channel optical waveguides on $LiNbO_3$ were fabricated by the Ti diffusion method with $O_2$ water-vapor environment. $2.5{\mu}m$ thick electrode was successfully fabricated by double-spin image reversal process. Modulation bandwidth was limited by a resonance at 2.9 GHz and modulation bandwidth up to 2.5GHz was approxirnately measured.

  • PDF

EPR Study of the High $T_c$ Superconductor $YBa_2$$Cu_3$$O_{7-y}$ Doped with Palladium or Zinc

  • Hag Chun Kim;Hyunsoo So;Ho Keun Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.499-504
    • /
    • 1991
  • EPR spectra of the high $T_c$ superconductor $YBa_2Cu_3O_{7-y}$ (YBCO) doped with $Pd^{2+} or Zn^{2+}$ have been measured at several temperatures and dopant concentrations. The spectral intensity of $YBa_2({Cu_{1-x}}{Pd_x})_3O_{7-y}$ is proportional to the dopant concentration. The behavior of $YBa_2(Cu_{1-x}Zn_x)_3O_{7-y}$ is quite different: the spectral intensity remains almost constant up to x=0.10 and then increases rapidly above x=0.10. The results are interpreted in terms of localized and antiferromagnetically spin-paired d holes in both CuO chain and planes. The $Pd_{2+}$ ion substitutes on the CuO chain consisting of "CuOCu dimers", and a $Cu_{2+}$ ion with an unpaired spin is gene rated for each $Pd_{2+}$ ion substituted. On the other hand, $Zn_{2+}$ substitutes on the CuO planes, and all or most of the spins in the two-dimensional plane manage to pair up in the region of low dopant concentration. When the dopant concentration exceeds a certain limit, it becomes more difficult for the spins to find partners, and the number of unpaired spins increases rapidly with increasing dopant concentration. The $Zn_{2+}$ ion is more effective than the $Pd_{2+}$ ion in suppressing the superconductivity of YBCO. This is attributed to the fact that $Zn_{2+}$ substitutes on the CuO planes which are mainly responsible for the superconductivity, while $Pd_{2+}$ substitutes on the CuO chain which is of secondary importance in the superconductivity.

Ab-Initio Study of the Schottky Barrier in Two-Dimensional Lateral Heterostructures by Using Strain Engineering (인장변형에 따른 이차원 수평접합 쇼트키 장벽 제일원리 연구)

  • Hwang, Hwihyeon;Lee, Jaekwang
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1288-1292
    • /
    • 2018
  • Using density functional theory calculations, we study the Schottky barrier (SB) change in a two-dimensional (2D) lateral heterostructure consisting of semiconducting $2H-MoS_2$ and the ferromagnetic metal $2H-VS_2$ by applying a uniaxial tensile strain from 0% to 10%. We find that the SB for holes is much smaller than that for electrons and that SB height decreases monotonically under increasing tensile strain. In particular, we find that a critical strain where the spin-up SB for holes is abruptly reduced to zero exists near a strain of 8%, implying that only the spin-up holes are allowed to flow through the $MoS_2-VS_2$ lateral heterostructure. Our results provide fundamental information and can be utilized to guide the design of 2D lateral heterostructure-based novel rectifying devices by using strain engineering.