• 제목/요약/키워드: Spherical powder

검색결과 418건 처리시간 0.025초

새로운 용액환원법에 의한 구형 코발트 미세 분말의 제조 (Preparation of Spherical Cobalt Fine Powders by New Liquid Reduction Method)

  • 김대원;김지훈;최요한;최희락;윤진호
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.260-265
    • /
    • 2015
  • Spherical fine cobalt powders were fabricated by new liquid reduction method. Commercial cobalt sufate heptahydrate was used as raw material. Also ethylene glycol was used as solvent and hydrazine-sodium hypophosphite mixture was used as reduction agent for the new liquid reduction method. A plate shaped cobalt powders with an approximately 300 nm were prepared by a traditional wet ruduction method using distilled water as solvent and hydrazine. Spherical fine cobalt powders with an average size of $1-3{\mu}m$ were synthesized by a new liquid reduction method in 0.3M cobalt sulfate and 1.5M hydrazine-0.6M sodium hypophosphite mixture at 333K.

RF 플라즈마 처리를 이용한 칠보 유약 분말의 구상화 및 적층 제조 공정 적용 (Spheroidization of Enamel Powders by Radio Frequency Plasma Treatment and Application to Additive Manufacturing)

  • 김기봉;양동열;김용진;최중호;곽지나;정우형
    • 한국분말재료학회지
    • /
    • 제27권5호
    • /
    • pp.388-393
    • /
    • 2020
  • The enamel powders used traditionally in Korea are produced by a ball-milling process. Because of their irregular shapes, enamel powders exhibit poor flowability. Therefore, polygonal enamel powders are only used for handmade cloisonné crafts. In order to industrialize or automate the process of cloisonné crafts, it is essential to control the size and shape of the powder. In this study, the flowability of the enamel powders was improved using the spheroidization process, which employs the RF plasma treatment. In addition, a simple grid structure and logo were successfully produced using the additive manufacturing process (powder bed fusion), which utilizes spherical enamel powders. The additive manufacturing technology of spherical enamel powders is expected to be widely used in the field of cloisonné crafting in the future.

Al-Cr-Zr 분말형성에 미치는 밀링 온도의 영향 (Effect of Milling Temperature on Formation of Al-Cr-Zr Metal Powder)

  • 김현승
    • 한국분말재료학회지
    • /
    • 제7권1호
    • /
    • pp.19-26
    • /
    • 2000
  • Al-Cr-Zr metal powders were prepared by cryo-milling(-75$^{\circ}C$),ambi-milling(25$^{\circ}C$) and warm-milling(200$^{\circ}C$) to investige the effect of milling temperature. The morphogical changes and microstructural evolution of Al-6wt.%Cr-3wt.%Zr metal powder ball milling were investigated by SEM, OM and XRD. The cryo-milling at -75$^{\circ}C$ caused the more refinement of powder particle size than ambi-milling and warm-milling. The partic morpholgy of Al-Cr-Zr metal powders changed changes into spheroidal particles at 25$^{\circ}C$and spherical particles at 200$^{\circ}C$The spherical particles were formed by agglomertion and contiuous wrapping of the spheroidal particles. The calculated Al crystallite size in Al-Cr-Zr metal powders by the Scherer equation were refined rapidly for short milling time -75$^{\circ}C$compared with milling at 25$^{\circ}C$ and 200$^{\circ}C$.

  • PDF

구상 페놀수지 분말과 푸르프릴 알코올로부터 주형성형에 의한 매크로 다공성 카본 폼의 제조 (Fabrication of Macro-porous Carbon Foams from Spherical Phenolic Resin Powder and Furfuryl Alcohol by Casting Molding)

  • 정현덕;김세기
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.502-507
    • /
    • 2019
  • Macro-porous carbon foams are fabricated using cured spherical phenolic resin particles as a matrix and furfuryl alcohol as a binder through a simple casting molding. Different sizes of the phenolic resin particles from 100-450 ㎛ are used to control the pore size and structure. Ethylene glycol is additionally added as a pore-forming agent and oxalic acid is used as an initiator for polymerization of furfuryl alcohol. The polymerization is performed in two steps; at 80℃ and 200℃ in an ambient atmosphere. The carbonization of the cured body is performed under Nitrogen gas flow (0.8 L/min) at 800℃ for 1 h. Shrinkage rate and residual carbon content are measured by size and weight change after carbonization. The pore structures are observed by both electron and optical microscope and compared with the porosity results achieved by the Archimedes method. The porosity is similar regardless of the size of the phenolic resin particles. On the other hand, the pore size increases in proportion to the phenol resin size, which indicates that the pore structure can be controlled by changing the raw material particle size.

Study on Spheroidizing Technology of Spherical Cast Tungsten Carbide

  • Li, Yuxi;Zhou, Yonggui;Li, Weiqin;Pan, Deng;Zhang, Lanting
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.652-653
    • /
    • 2006
  • This paper introduces a special spheroidizing technology at ultra-high temperature. The conventional cast tungsten carbide (YZ) is melted at high temperature, rapidly cooled and spheroidized on a new ultra-high temperature spheroidizing equipment to prepare various grades WSC powders.

  • PDF

SHS 합성에 의한 몰리브덴계 용사용 복합분말의 제조 (Fabrication of Mo based Thermal Spray Composite Powder by Self- propagating High- temperature Synthesis)

  • 박제신;심건주
    • 한국재료학회지
    • /
    • 제11권9호
    • /
    • pp.763-768
    • /
    • 2001
  • Molybdenum-based thermal spray powder is widely used for coating the moving parts of the internal combustion engines due to its excellent wear resistance. A composite powder of the $Mo_{40}(Al_{1-x}Si_x)_{60}$ system was synthesized using the SHS method. The synthesized bulk was pulverized and specially treated to produce thermal spray powder. It was found that the synthesis reaction consisted of two-steps: the formation of $Al_8/Mo_3$ and the formation of Mo(Al,Si)$_2$. Both the temperature and the rate of the SHS reaction linearly increased with the increase of the value of x in $Mo_{40}(Al_{1-x}Si_x)_{60}$, The temperature and the rate of the reaction were also affected by the compacting density of the specimens, exhibiting the maximum valves at 62% and 60%, respectively. Since spherical shape is advantageous to the thermal spraying process, shape-control of the powder was attempted with PVA as a binding additive, resulting in the successful production of almost perfectly spherical powder of 80 $\mu\textrm{m}$ Ø$(d_{50})$ mean particle size.

  • PDF

Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직 (Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders)

  • 소웅섭;백경호
    • 한국재료학회지
    • /
    • 제21권2호
    • /
    • pp.106-110
    • /
    • 2011
  • A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.