• 제목/요약/키워드: Spherical powder

검색결과 418건 처리시간 0.024초

대기 분위기의 알루미나 도가니 내에서 Zn 분말의 산화에 의해 합성된 ZnO 나노분말 (ZnO Nano-Powder Synthesized through a Simple Oxidation of Metallic Zn Powder in Alumina Crucible under an Air Atmosphere)

  • 이근형
    • 대한금속재료학회지
    • /
    • 제48권9호
    • /
    • pp.861-866
    • /
    • 2010
  • Tetrapod-shaped ZnO crystals were synthesized through a simple oxidation of metallic Zn powder in air without the presence of any catalysts or substrates. X-ray diffraction data revealed that the ZnO crystals had wurtzite structure. It is supposed that the growth of the tetrapod proceeded in a vapor-solid growth mechanism. As the amount of the source powder increased, the size of the tetrapod decreased. The tip morphology of the tetrapod changed from a needle-like shape to a spherical shape with the oxidation time. ZnO crystals with rod shape were fabricated via the oxidation of Zn and Sn mixture. Sn played an important role in the formation of ZnO crystals with different morphology by affecting the growth mode of ZnO crystals. The cathodoluminescent properties were measured for the samples. The strongest green emission was observed for the rod-shaped ZnO crystals, suggesting that the crystals had the high density of oxygen vacancies.

A novel approach for manufacturing oxide dispersion strengthened (ODS) steel cladding tubes using cold spray technology

  • Maier, Benjamin;Lenling, Mia;Yeom, Hwasung;Johnson, Greg;Maloy, Stuart;Sridharan, Kumar
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1069-1074
    • /
    • 2019
  • A novel fabrication method of oxide dispersion strengthened (ODS) steel cladding tubes for advanced fast reactors has been investigated using the cold spray powder-based materials deposition process. Cold spraying has the potential advantage for rapidly fabricating ODS cladding tubes in comparison with the conventional multi-step extrusion process. A gas atomized spherical 14YWT (Fe-14%Cr, 3%W, 0.4%Ti, 0.2% Y, 0.01%O) powder was sprayed on a rotating cylindrical 6061-T6 aluminum mandrel using nitrogen as the propellant gas. The powder lacked the oxygen content needed to precipitate the nanoclusters in ODS steel, therefore this work was intended to serve as a proof-of-concept study to demonstrate that free-standing steel cladding tubes with prototypical ODS composition could be manufactured using the cold spray process. The spray process produced an approximately 1-mm thick, dense 14YWT deposit on the aluminum-alloy tube. After surface polishing of the 14YWT deposit to obtain desired cladding thickness and surface roughness, the aluminum-alloy mandrel was dissolved in an alkaline medium to leave behind a free-standing ODS tube. The as-fabricated cladding tube was annealed at $1000^{\circ}C$ for 1 h in an argon atmosphere to improve the overall mechanical properties of the cladding.

Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts

  • Kim, Kyungho;Lee, Sungmin;Im, Chae-Nam;Kang, Seung-Ho;Cheong, Hae-Won;Han, Yoonsoo
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.364-369
    • /
    • 2017
  • Ceramic powder, such as MgO, is added as a binder to prepare the green compacts of molten salts of an electrolyte for a thermal battery. Despite the addition of a binder, when the thickness of the electrolyte decreases to improve the battery performance, the problem with the unintentional short circuit between the anode and cathode still remains. To improve the current powder molding method, a new type of electrolyte separator with porous MgO preforms is prepared and characteristics of the thermal battery are evaluated. A Spherical PMMA polymer powder is added as a pore-forming agent in the MgO powder, and an organic binder is used to prepare slurry appropriate for tape casting. A porous MgO preform with $300{\mu}m$ thickness is prepared through a binder burnout and sintering process. The particle size of the starting MgO powder has an effect, not on the porosity of the porous MgO preform, but on the battery characteristics. The porosity of the porous MgO preforms is controlled from 60 to 75% using a pore-forming agent. The batteries prepared using various porosities of preforms show a performance equal to or higher than that of the pellet-shaped battery prepared by the conventional powder molding method.

가스분무공정을 이용한 (AgSbTe2)15(GeTe)85 열전분말의 제조 및 특성평가 (Synthesis and Characterization of (AgSbTe2)15(GeTe)85 Thermoelectric Powder by Gas Atomization Process)

  • 김효섭;이진규;구자명;천병선;홍순직
    • 한국분말재료학회지
    • /
    • 제18권5호
    • /
    • pp.449-455
    • /
    • 2011
  • In this study, p-type $(AgSbTe_2)_{15}(GeTe)_{85}$: TAGS-85 compound powders were prepared by gas atomization process, and then their microstructures and mechanical properties were investigated. The fabricated powders were of spherical shape, had clean surface, and illustrated fine microstructure and homogeneous $AgSbTe_2$ + GeTe solid solution. Powder X-ray diffraction results revealed that the crystal structure of the TAGS-85 sample was single rhombohedral GeTe phase, which with a space group $R_{3m}$. The grain size of the powder particles increased while the micro Vickers hardness decreased with increasing annealing temperature within the range of 573 K and 723 K due to grain growth and loss of Te. In addition, the crystal structure of the powder went through a phase transformation from rhombohedral ($R_{3m}$) at low-temperature to cubic ($F_{m-3m}$) at high-temperature with increasing annealing temperature. The micro Vickers hardness of the as-atomized powder was around 165 Hv, while it decreased gradually to 130 Hv after annealing at 673K, which is still higher than most other fabrication processes.

레이저 용접용 Fe계 합금 분말 제조에 관한 연구 (A Study on the Fabrication of Fe Based Alloy Powder for Laser Welding)

  • 이종재;손영산
    • 한국산학기술학회논문지
    • /
    • 제13권8호
    • /
    • pp.3315-3318
    • /
    • 2012
  • 본 연구에서는 가스아토마이저를 이용하여 Fe계 비정질 합금 분말을 제조하였고, 제조된 비정질 분말의 특성을 평가하였다. Fe계 비정질 합금분말의 형상, 결정구조, 비정질 형성능 분석은 고분해능 주사전자현미경(FESEM), X-선 회절분석기, 시차주사열량측정법(DSC)을 이용하여 각각 분석하였다. 분말은 45~90 ${\mu}m$ 크기의 구형으로 생성되었다. 제조된 Fe-계 합금분말을 X-선 회절 분석한 결과 결정피크는 관찰되지 않고 전형적인 비정질 결정구조 피크만 관찰되었다. 합금분말의 DSC 분석결과 벌크비정질합금에서 나타나는 Tg와 Tx가 존재하였으며, Tg = $530^{\circ}C$, Tx = $560^{\circ}C$로 관찰되었다. 이러한 결과로부터 본 연구를 통하여 제조된 구형의 벌크비정질합금(BMG) 분말은 레이저 용접에 적용이 가능한 재료임을 알 수 있었다.

분무열분해 공정에 의한 코발트 산화물 나노 분체 제조에 미치는 노즐 팁 크기의 영향 (Effect of Nozzle Tip Size on the Preparation of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process)

  • 김동희;유재근
    • 자원리싸이클링
    • /
    • 제25권6호
    • /
    • pp.41-49
    • /
    • 2016
  • 본 연구에서는 코발트 염화물($CoCl_2$) 용액을 원료로 하여 분무열분해 반응에 의하여 평균입도 50 nm 이하의 코발트 산화물($Co_3O_4$) 분말을 제조하였으며 원료용액이 분사되는 노즐 팁의 크기 변화에 따른 입자들의 특성 변화를 파악하였다. 노즐 팁의 크기가 1 mm인 경우에는 형성된 대부분의 액적형태는 구형을 이루고 있으며 표면은 매우 치밀한 조직을 나타내고 있음을 알 수 있었다. 최종 형성된 입자들의 평균입도는 20 ~ 30 nm이었다. 노즐 팁의 크기가 2 mm인 경우에는 형성된 액적형태는 일부는 구형을 이루고 있었지만 상당 부분은 심하게 분열된 형태를 나타내고 있었다. 노즐 팁 크기가 5 mm인 경우에는 구형을 이루는 액적형태는 거의 존재하지 않았으며 거의 대부분 심하게 분열된 상태를 나타내고 있었다. 액적형태의 표면조직은 다른 노즐 팁 경우에 비하여 치밀함이 크게 감소하였다. 형성된 입자들의 평균입도는 약 25 nm이었다. 노즐 팁 크기가 1 mm로부터 2 mm 및 3 mm로 증가함에 따라 XRD 피크들의 강도는 거의 변화가 없는 반면 노즐 팁 크기가 5 mm로 증가되는 경우에는 피크의 강도가 현저히 감소하게 되었다. 노즐 팁 크기가 1 mm로부터 2 mm 로 증가함에 따라 입자들의 비표면적은 감소하였으며 5 mm로 증가되는 경우에는 비표면적이 현저히 증가하였다.

구형 PMMA와 WO3 분말이 혼합된 Camphene 슬러리의 동결건조에 의한 W 다공체 제조 (Fabrication of Porous W by Freeze-Drying Process of Camphene Slurries with Spherical PMMA and WO3 Powders)

  • 이한얼;전기철;김영도;석명진;오승탁
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.602-606
    • /
    • 2015
  • Porous W with spherical and directionally aligned pores was fabricated by the combination of sacrificial fugitives and a freeze-drying process. Camphene slurries with powder mixtures of $WO_3$ and spherical PMMA of 20 vol% were frozen at $-25^{\circ}C$ and dried for the sublimation of the camphene. The green bodies were heat-treated at $400^{\circ}C$ for 2 h to decompose the PMMA; then, sintering was carried out at $1200^{\circ}C$ in a hydrogen atmosphere for 2 h. TGA and XRD analysis showed that the PMMA decomposed at about $400^{\circ}C$, and $WO_3$ was reduced to metallic W at $800^{\circ}C$ without any reaction phases. The sintered bodies with $WO_3$-PMMA contents of 15 and 20 vol% showed large pores with aligned direction and small pores in the internal walls of the large pores. The pore formation was discussed in terms of the solidication behavior of liquid camphene with solid particles. Spherical pores, formed by decomposition of PMMA, were observed in the sintered specimens. Also, microstructural observation revealed that struts between the small pores consisted of very fine particles with size of about 300 nm.

SOFC anode용 나노구형 Ni(1-x)-M(x=0~0.15)(M=Co, Fe) alloy 분말 합성 및 그 특성 (Synthesis and Characterization of Spherical Nano Ni(1-x)-M(x=0~0.15)(M=Co, Fe) Alloy Powder for SOFC Anode)

  • 이민진;최병현;지미정;안용태;홍선기;강영진;황해진
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.367-373
    • /
    • 2014
  • In this study, the reducing agent hydrazine and precipitator NaOH were used with $NiCl_2$ as a starting material in order to compound Ni-based material with spherical nano characteristics; resulting material was used as an anode for SOFC. Synthetic temperature, pH, and solvent amounts were experimentally optimized and the synthesis conditions were confirmed. Also, a 0 ~ 0.15 mole ratio of metal(Co, Fe) was alloyed in order to increase the catalyst activation performance of Ni and finally, spherical nano $Ni_{(1-x)}-M_{(x=0{\sim}0.15)}$(M = Co, Fe) alloy materials were compounded. In order to evaluate the catalyst activation for hydrocarbon fuel, fuel gas(10%/$CH_4$+10%/Air) was added and the responding gas was analyzed with GC(Gas Chromatography). Catalyst activation improvement was confirmed from the 3% hydrogen selectivity and 2.4% methane conversion rate in $Ni_{0.95}-Co_{0.05}$ alloy; those values were 4.4% and 19%, respectively, in $Ni_{0.95}-Fe_{0.05}$ alloy.

Ni 산성염과 Ni 염기성 염의 혼합에 의한 나노 NiO 분말 제조 및 이의 환원 특성 (Preparation of nanosized NiO powders by mixing acid and base nickel salts and their reduction behavior)

  • 김창삼;윤동훈;전성운;권혁보;박상환
    • 한국결정성장학회지
    • /
    • 제20권6호
    • /
    • pp.283-288
    • /
    • 2010
  • 나노 크기의 NiO 분말을 Ni 산성염과 Ni 염기성염을 혼합하여 제조하는 방법에서 원료가 생성되는 NiO와 이의 환원으로 생성되는 Ni 결정 특성에 미치는 영향을 연구하였다. 산성염으로는 Ni formate를 염기성염으로는 수산화 Ni과 염기성 Ni 탄산염을 사용하였다. 혼합비는 산성염 1당량에 염기성염 9당량을 사용하였으며, 탄산염을 사용한 경우 $750^{\circ}C$/2 h 하소에서도 ~100 nm의 구형의 NiO 분말을 얻었으며, 수산화 염을 사용한 경우는 $600^{\circ}C$/2 h에서는 ~100 nm의 유사 구형의 NiO가 생성되나, $750^{\circ}C$ 열처리에서는 100~600 nm의 유사 입방체 분말을 얻었다. 수산화 염을 사용한 경우에는 탄산염을 사용한 경우에 비하여 수소가스에 의한 환원이 훨씬 빠르게 진행되어 necking이 일어나며 소결이 이루어져 다공체를 형성하였다. 이들 특성을 TG/DSC, XRD, SEM으로 분석하였다.

분무건조된 Nd-Fe-B 전구체 입자의 크기조절 및 환원-확산 후 자기 특성에 미치는 영향 (Size Control of Nd-Fe-B Precursor Particles Prepared by Spray Drying and Its Effect on the Magnetic Properties of Nd-Fe-B Alloy Powders after Reduction-Diffusion)

  • 백연경;서영택;이정구;김동수;배동식;최철진
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.359-365
    • /
    • 2013
  • In this study, we fabricated $Nd_2Fe_{14}B$ hard magnetic powders with various sizes via spray drying combined with reduction-diffusion process. Spray drying is widely used to produce nearly spherical particles that are relatively homogeneous. Thus, the precursor particles were prepared by spray drying using the aqueous solution containing Nd salts, Fe salts and boric acid with the target stoichiometric composition of $Nd_2Fe_{14}B$. The mean particle sizes of the spray-dried powders are in the range from one to seven micrometer, which are adjusted by controlling the concentrations of precursor solutions. After debinding the as-prepared precursor particles, ball milling was also conducted to control the particle sizes of Nd-Fe-B oxide powders. The resulting particles with different sizes were subjected to subsequent treatments including hydrogen reduction, Ca reduction and washing for CaO removal. The size effect of Nd-Fe-B oxide particles on the formation of $Nd_2Fe_{14}B$ phase and magnetic properties was investigated.