• Title/Summary/Keyword: Spherical alumina

Search Result 44, Processing Time 0.022 seconds

Synthesis of Kaolinitic Clay Mineral from Amorphous Alumino-Silicate by Hydrothermal Process (비정질 Alumino-Silicate로부터 수열반응에 의한 Kaolinite질 인공점토의 합성에 관한 연구)

  • 김남일;박계혁;정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1076-1086
    • /
    • 1994
  • This study covers synthetic effect of the various hydrothermal treatments on formation of artificially made kaolinite mineral. The hydrothermal treatment includes the temperature treatment with time duration, addition of seeds, particle size of the starting material used, pH variation and the different types of organic acids. A colloidal silica and alumina sol which are commercially available are used for this study. A colloidal silica and alumina sol are mixed by the atomic ratio of Al/Si = 1, based on the theoretical kaolinite composition and calcined at $600^{\circ}C$ for 8 hours duration. It was found that the kaolinitic clay mineral was well developed; thereby, the different patterns of crystalline mineral are appeared. Spherical type as a crystal form was distinctively formed at the temperature of 20$0^{\circ}C$ to 25$0^{\circ}C$ with short duration time, while platy type as a crystal was highly yielded at 300~35$0^{\circ}C$. Moreover, by adding more than 20 wt% of seed as the natural kaolinitic clay to the starting material is widely distributed and developed when 2 ${\mu}{\textrm}{m}$ or less particle size of the starting material is used; also, when they are heat-treated at the temperature of 25$0^{\circ}C$ with 5 hours duration. With respect of the effect of pH variation on formation of the synthetic kaolinite minerals, the crystalline minerals are highly yielded at less than pH 2 and gradually diminished at more than pH9. Regarding to the effect of different acids on development of the kaolinite mineral, the organic acids with high chelating capacity produces good formation of crystalline minerals; whereas, amine radical-(NH2) is not an effective agent to generate the crystalline minerals.

  • PDF

Condition and Mechanism of Precipitation of Intravesicular Aluminum Ion in Preparation of Monodispersed Spherical Fine Particles With Use of Vesicles (베시클을 이용한 단분산 구형 미분체 합성에서 베시클 내 알루미늄 이온의 침전조건과 침전메카니즘)

  • Chung, Jong Jae;Kim, Chang Hyun;Lee, Byung Kyo;Ri, Chang Seop;Lee, Hae Wook
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.8
    • /
    • pp.535-541
    • /
    • 1996
  • In preparation of fine alumina powders with use of vesicle, the effect of variation of pH in extravesicular dispersion system to mechanism of precipitation and shape and size distribution of precipitate was investigated. The results of observation by TEM and turbidimeter were obtained as follows. Reaction between aluminum ion and hydroxyl ion to produce precipitate within vesicle was initiated at pH 11.4 and spherical fine precipitates, about 50 nm size, were formed at pH 12.0. About pH 12.3, size of precipitates in vesicle grew twice as great as those formed below pH 12.0 because of the agglomeration and coalescence of vesicleswith time.

  • PDF

Preparation and Thermal Behavior of Monodispersed $Al_2O_3-TiO_2$ Powder Synthesized by Alkoxide Method

  • Song, Yong-Won;Kim, Gyun-Joong;Park, Sang-Heul
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.137-142
    • /
    • 1995
  • Monodispersed $Al_2O_3-TiO_2$ Powder was prepared by metal-alkoxide hydrolsis. A homogeneous nucleation/growth occurred in the solutions containing ethanol, butanol and acetonitrile, and resulted in spherical, submicrometer-sized powder. The titania and the alumina crystals were formed at $800^{\circ}C$ and $1000^{\circ}C$, respectively. These crystala were subsequently reacted each other beyond $1320^{\circ}C$ and formed $Al_2TiO_5$. The relative densities of sintered bodies prepared with as-received powder were examined at the temperature range of 1300-$1500^{\circ}C$ and they were about 79% at $1300^{\circ}C$. The formation of aluminum titanata decreased the relative density at the temperature range of 1300-$1450^{\circ}C$, and at above $1450^{\circ}C$, the relative density started to increase again. It was observed that $\alpha-Al_2O_3$-doped aluminum titanate was more stable than pure aluminum titante at $1200^{\circ}C$.

  • PDF

Synthesis and characterization of AlN nanopowder by the microwave assisted carbothermal reduction and nitridation (CRN)

  • Chun, Seung-Yeop;Chun, Myoung-Pyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.223-228
    • /
    • 2017
  • Aluminum nitride (AlN) powder was successfully synthesized at low temperature via carbothermal reduction and nitridation (CRN) assisted by microwave heating. The synthesis processes of AlN powder were investigated with X-ray diffraction, FE-SEM, FT-IR and TGA/DSC. Aluminum nitrate was used as an oxidizer and aluminum source, urea as fuel, and glucose as carbon source. These starting materials were mixed with D.I water and reacted in a flask at $100^{\circ}C$ for 20 minutes. After the reaction was finished, black foamy intermediate product was formed, which was considered to be an amorphous $Al_2O_3$ particles through intermediate product obtained by solution combustion synthesis (SCS) at the results of X-ray diffraction patterns and FT-IR. This intermediate product was nitridated at temperatures of $1300^{\circ}C$ and $1400^{\circ}C$ in $N_2$ atmosphere by a microwave heating furnace and then decarbonated at $600^{\circ}C$ for 2 hours in air. It should be noticed from FE-SEM images that as nitridated particles, identified as AlN from X-ray diffraction patterns, are covered with carbon residues. After decarbonating the nitridated powders, the spherical pure AlN powders were obtained without alumina and their particle sizes were dependent on the nitridating temperature with high temperature of $1400^{\circ}C$ giving large particles of around 70~100 nm.

Fabrication and Properties of Bioactive Porous Ceramics for Bone Substitution (뼈 대체용 생체활성 다공질 세라믹스의 제조 및 특성)

  • Lee, Lak-Hyoung;Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.584-588
    • /
    • 2008
  • Porous hydroxyapatite(HA) and HA-coated porous $Al_2O_3$ possessing pore characteristics required for bone substitutes were prepared by a slurry foaming method combined with gelcasting. The HA coating was deposited by heating porous $Al_2O_3$ substrates in an aqueous solution containing $Ca^{2+}$ and ${PO_4}^{3-}$ ions at $65{\sim}95^{\circ}C$ under ambient pressure. The pore characteristic, microstructure, and compressive strength were investigated and compared for the two kinds of samples. The porosity of the samples was about 81% and 80% for HA and $Al_2O_3$, respectively with a highly interconnected network of spherical pores with size ranging from 50 to $250{\mu}m$. The porous $Al_2O_3$ sample showed much higher compressive strength(25 MPa) than the porous HA sample(10 MPa). Fairly dense and uniform HA coating(about $2{\mu}m$ thick) was deposited on the porous $Al_2O_3$ sample. Since the compressive strength of cancellous bone is $2{\sim}12$ MPa, both the porous HA and HA-coated porous $Al_2O_3$ samples could be successfully utilized as scaffolds for bone repair. Especially the latter is expected suitable for load bearing bone substitutes due to its excellent strength.

Utilization of Fly Ash as a Source of Mineral Fertilizers -I. Mineralogical Characteristics (Fly ash 비료화(肥料化) 연구(硏究) -I. Fly ash의 광물학적(鑛物學的) 특성(特性))

  • Shin, Jae-Sung;Seong, Ki-Seog;Kim, Maun-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.309-314
    • /
    • 1987
  • This study was conducted to examine mineralogical aspects on anthractite and bituminous coal-fired power-plant ashes as a source of mineral fertilizer. Fly ashes contain dominant amounts of silica and alumina and considerable quantitites of potassium and boron. However, potassium and silica present in unavailable forms for plant growth. X-ray, DTA, and IR analysis of ash particles indicated the formation of new mineral, mullite with shape of which were spherical in the surface morphologies of SEM. Detailed SEM investigation showed the presence of imbedded blocky shape silicate material.

  • PDF

Fabrication of α-Alumina Nanopowders by Thermal Decomposition of Ammonium Aluminum Carbonate Hydroxide (AACH) (암모늄 알루미늄 탄산염(hhCH)의 열분해에 의한 α-알루미나 나노분말 제조)

  • O, Yong-Taeg;Shin, Dong-Chan;Kim, Sang-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.242-246
    • /
    • 2006
  • [ ${\alpha}-Al_2O_3$ ] nanopowders were fabricated by the thermal decomposition and synthetic of Ammonium Aluminum Carbonate Hydroxide (AACH). Crystallite size of 5 to 8 nm were fabricated when reaction temperature of AACH was low, $8^{\circ}C$, and the highest $[NH_4{^+}][AlO(OH)_n{(SO_4){^-}}_{3-n/2}][HCO_3]$ ionic concentration to pH of the Ammonium Hydrogen Carbonate (AHC) aqueous solution was 10. The phase transformation fem $NH_4Al(SO_4)_2$, rhombohedral $(Al_2(SO_4)_3)$, amorphous-, ${\theta}-,\;{\alpha}-Al_2O_3$ was examined at each temperature according to the AACH. A Time-Temperature-Transformation (TTT) diagram for thermal decomposition in air was determined. Homogeneous, spherical nanopowders with a particle size of 70 nm were obtained by firing the 5 to 8 m crystallites, which had been synthesized from AACH at pH 10 and $8^{\circ}C,\;at\;1150^{\circ}C$ for 3 h in air.

A Comparison in Characteristics of Chemical Composition of Glass Vessels Excavated from Neungsalli Temple in Buyeo, Korea, from Baekje Period

  • Koh, Min Jeong;Kang, Hyung Tae;Kim, Na Young;Kim, Gyu Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4173-4179
    • /
    • 2012
  • From Neungsalli Temple located in Buyeo, ancient glass vessel fragments were discovered along with hundreds of glass beads. In this research, we used SEM-EDS to analyze glass vessel fragments and beads excavated from Neungsalli Temple. Then, we analyzed their chemical composition and examined their characteristics. In particular, we investigated a relationship between glass vessels from Neungsalli temple and Hwangnamdaechong (South tomb). The result of our experiment showed that the glass artifacts from Neungsalli temple were all soda glass. To be specific, the vessel fragments were soda-lime glass and spherical beads were high-alumina soda glass. Then, we compared glass vessel fragments from Neungsalli temple to glass vessels excavated from Hwangnamdaechong. Glass vessels from both sites turned out to be soda lime glass. We classified them further based on raw material used for soda - natron and marine plant ash.

ZnO Nano-Powder Synthesized through a Simple Oxidation of Metallic Zn Powder in Alumina Crucible under an Air Atmosphere (대기 분위기의 알루미나 도가니 내에서 Zn 분말의 산화에 의해 합성된 ZnO 나노분말)

  • Lee, Geun-Hyoung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.861-866
    • /
    • 2010
  • Tetrapod-shaped ZnO crystals were synthesized through a simple oxidation of metallic Zn powder in air without the presence of any catalysts or substrates. X-ray diffraction data revealed that the ZnO crystals had wurtzite structure. It is supposed that the growth of the tetrapod proceeded in a vapor-solid growth mechanism. As the amount of the source powder increased, the size of the tetrapod decreased. The tip morphology of the tetrapod changed from a needle-like shape to a spherical shape with the oxidation time. ZnO crystals with rod shape were fabricated via the oxidation of Zn and Sn mixture. Sn played an important role in the formation of ZnO crystals with different morphology by affecting the growth mode of ZnO crystals. The cathodoluminescent properties were measured for the samples. The strongest green emission was observed for the rod-shaped ZnO crystals, suggesting that the crystals had the high density of oxygen vacancies.

A Study on the Genesis and Distribution of High Refractory Ore Minerals in Jeonnam Province, Korea (고내화도(高耐火度) 광석광물(鑛石鑛物)의 분포(分布)와 성인(成因)에 관(關)한 연구(硏究) -전남지역(全南地域)을 중심(中心)으로-)

  • Park, Hong Bong;Kwon, Sook Moon;Park, Bae Young;Sin, Sang Eun
    • Economic and Environmental Geology
    • /
    • v.15 no.2
    • /
    • pp.89-102
    • /
    • 1982
  • Several mines in Jeonnam produce the ores of having high SK number of refractoriness. Among those for 5 mines, this paper deals with the relationahip between SK number and mineral composition of the ore, and with the genesis of the deposits. 1. Byok-Song and Chon-Un Mine: Mineral compositions of the ores are chiastolite, chloritoid(monoclinic), kaolinite, sericite, diaspore, corundum, and quartz. The ores having SK number of 36 or 37, consist chiefly of chiastolite and diaspore and a little amount of kaolinite, sericite, corundum, chloritoid, and quartz. The ores having SK number of 33 or 34 consist of chloritoid, sericite, kaolinite, chiastolite, and diaspore. With increasing the amount of chloritoid and sericite, and decreasing the amount of diaspore and chiastolite, the SK number of the ores decreases. The deposit, originally high alumina-bearing shale of Chon-Un San formation, seems to be formed by contact metamorphism(forming of chiastolite), regional metamorphism(forming of monoclinic chloritoid), and hydrothermal replacement(forming of large crystal of diaspore veinlets). 2. Song-Sauk Mine: Mineral compositions of the ores are chiefly pyrophyllite and quartz and a little amount of kaolinite, dickite, diaspore, and pyrite. Many spherical inclusions containing in pyrophyllite deposits, consist chiefly of diaspore and kaolinite, The inclusions have the high SK number of 38. Amount of spherical inclusions is about 5 % to the whole pyrophyllite ores. The SK number of other pyrophyllite ore is less than 32. Quartz and pyrite are chief minerals lowering the SK number of the ore. The deposits have been formed by hydrothermal processes by replacing the siliceous tuff of Mesozoic age. Spherical inclusions consisting of diaspore and kaolinite, show the selective replacement of hydrothermal solutions to the materials of feldspar in tuff. 3. Seung-San Mine: Mineral compositions of the ores are chiefly kaolinite, dickite, diaspore, and quartz. But some part of the mine consists of alunite deposits. The ores having SK number of 35 or higher consist chiefly of kaolinite and diaspore and a little amount of quartz. With increasing the amount of quartz and decresing the amount of diaspore, the SK number of the ore decreases. The deposits have been formed by hydrothermal processes by replacing the siliceous tuff and quartz porphyry. 4. Wan-Do Mine: Mineral compositions of the ores are chiefly pyrophyllite and quartz. But some ore contains a little amount of diaspore, kaolinite, pyrite, and chloritoid. The ores having high SK number of 36 consist chiefly of diaspore and pyrophyllite. Pyrophyllite ore has a SK number of 32 or lower. Amount of quartz and pyrite decreases the SK number of ores in this mine. Rhyolite was replaced by the action of hydrothermal solutions forming the pyrophyllite deposits.

  • PDF