• 제목/요약/키워드: Spherical Earth

검색결과 106건 처리시간 0.029초

발산 순압 로스비-하우어비츠 파동의 안정성 (Stability of the Divergent Barotropic Rossby-Haurwitz Wave)

  • 정한별;정형빈
    • 한국지구과학회지
    • /
    • 제37권2호
    • /
    • pp.107-116
    • /
    • 2016
  • 전구영역 수치모델을 이용하여 순압 로스비-하우어비츠 파동의 안정성을 조사하였다. 본 연구에서 조사한 로스비-하우어비츠 파동은 강체 회전하는 동서 기본류와 유한한 진폭을 가지는 구면조화 파동으로 구성된다. 로스비-하우어비츠 파동은 강체 회전하는 동서 평균류의 강도에 따라 정상 또는 비정상의 구조로 나타난다. 수치 실험을 통해 임의의 다른 두 시간에서 섭동장의 진폭을 비교하여 파동의 안정성뿐만 아니라 성장률을 결정하였다. 로스비-하우어비츠 파동의 불안정 모드는 다양한 동서 파수 성분이 결합된 형태로 나타났다. 파동의 속도가 느린 지역에서 와도 섭동장은 불연속적인 형태를 보이는데, 이는 모델의 수평 해상도와 관계가 없는 것으로 밝혀졌다. 푸리에-유한 요소 모델에서 더 이른 적분 시간에 불안정 모드가 나타났는데, 이는 구면조화 스펙트럴 모델 대비 더 낮은 수치 정확도를 가지기 때문인 것으로 보인다. 모델의 전체적인 정확도를 고려하여, 불안정 모드가 구면 조화 파동을 전체적으로 지배하기 시작하는 시간을 추정하였다.

Spherical Harmonics Power-spectrum of Global Geopotential Field of Gaussian-bell Type

  • Cheong, Hyeong-Bin;Kong, Hae-Jin
    • 한국지구과학회지
    • /
    • 제34권5호
    • /
    • pp.393-401
    • /
    • 2013
  • Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell type is defined as a function of sine of angular distance from the bell's center in order to guarantee the continuity on the global domain. Since the integral-formula associated with the Legendre polynomials was represented with infinite series of polynomial, an estimation method was developed to make the procedure computationally efficient while preserving the accuracy. The spherical harmonics power spectrum was shown to vary significantly depending on the scale parameter of the Gaussian bell. Due to the accurate procedure of the new method, the power (degree variance) spanning over orders that were far higher than machine roundoff was well explored. When the scale parameter (or width) of the Gaussian bell is large, the spectrum drops sharply with the total wavenumber. On the other hand, in case of small scale parameter the spectrum tends to be flat, showing very slow decaying with the total wavenumber. The accuracy of the new method was compared with theoretical values for various scale parameters. The new method was found advantageous over discrete numerical methods, such as Gaussian quadrature and Fourier method, in that it can produce the power spectrum with accuracy and computational efficiency for all range of total wavenumber. The results of present study help to determine the allowable maximum scale parameter of the geopotential field when a Gaussian-bell type is adopted as a localized function.

NOAA/AVHRR 영상의 기하학적 보정 (Geometric Correction of the NOAA/AVHRR Imagery)

  • 서명석;신경섭;박경윤
    • 대한원격탐사학회지
    • /
    • 제6권1호
    • /
    • pp.25-37
    • /
    • 1990
  • Methods of geometric correction for the Advanced Very High Resolution Radiometer imagery of NOAA satellites were developed and applied to the software for image processing of meteorological satellite data. The software for finding the earth location of each scan position and the software for gridding on original imagery were dedigned. On the assumption of circular orbits and the spherical earth, the methods developed were sufficiently accurate in the purpose of most meteorological data analyses.

비구형 빙정의 단일산란 특성 계산: 물리적으로 일관된 구름 미세물리와 복사를 향하여 (Calculations of the Single-Scattering Properties of Non-Spherical Ice Crystals: Toward Physically Consistent Cloud Microphysics and Radiation)

  • 엄준식;장성현;김정규;박성민;정희정;한수지;이윤서
    • 대기
    • /
    • 제31권1호
    • /
    • pp.113-141
    • /
    • 2021
  • The impacts of ice clouds on the energy budget of the Earth and their representation in climate models have been identified as important and unsolved problems. Ice clouds consist almost exclusively of non-spherical ice crystals with various shapes and sizes. To determine the influences of ice clouds on solar and infrared radiation as required for remote sensing retrievals and numerical models, knowledge of scattering and microphysical properties of ice crystals is required. A conventional method for representing the radiative properties of ice clouds in satellite retrieval algorithms and numerical models is to combine measured microphysical properties of ice crystals from field campaigns and pre-calculated single-scattering libraries of different shapes and sizes of ice crystals, which depend heavily on microphysical and scattering properties of ice crystals. However, large discrepancies between theoretical calculations and observations of the radiative properties of ice clouds have been reported. Electron microscopy images of ice crystals grown in laboratories and captured by balloons show varying degrees of complex morphologies in sub-micron (e.g., surface roughness) and super-micron (e.g., inhomogeneous internal and external structures) scales that may cause these discrepancies. In this study, the current idealized models representing morphologies of ice crystals and the corresponding numerical methods (e.g., geometric optics, discrete dipole approximation, T-matrix, etc.) to calculate the single-scattering properties of ice crystals are reviewed. Current problems and difficulties in the calculations of the single-scattering properties of atmospheric ice crystals are addressed in terms of cloud microphysics. Future directions to develop physically consistent ice-crystal models are also discussed.

Spectral Distorical data in the polar region

  • Kim, Jeong-Woo;Won, Joong-Sun;Min, Kyung-Duck;Kim, Hye-Yun
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2000년도 춘계공동학술발표회
    • /
    • pp.308-310
    • /
    • 2000
  • Sampling rates become inconsistent when spatial data in spherical coordinate are re-sampled with respect latitudinal or longitudinal degree for mathematical processes such as Fourier Transfrom, and this results in the distrtions of the processed data in the wavenmber domain. This distortions are more evident in the polar regions. An example is presented to show such distortions during the recovery process of free-air gravity anomalies from ERSI radar atimeter data in Russian Arctic Barents Sea, and a method is present to minimize the distortion using Lambect Conformal Conic map projection.

  • PDF

라만-탄성 라이다를 이용한 황사 및 오염 에어러솔의 라이다 비 측정 연구 (Measurements of the Lidar Ratio for Asian Dust and Pollution Aerosols with a Combined Raman and Back-scatter Lidar)

  • 윤순창;이영지;김상우;김만해
    • 대기
    • /
    • 제20권4호
    • /
    • pp.483-494
    • /
    • 2010
  • The vertical profiles of the extinction coefficient, the backscatter coefficient, and the lidar ratio (i.e., extinction-to-backscattering ratio) for Asian dust and pollution aerosols are determined from Raman (inelastic) and elastic backscatter signals. The values of lidar ratios during two polluted days is found between 52 and 82 sr (July 22, 2009) and 40~60 sr (July 31, 2009) at 52 nm, with relatively low value of particle depolarization ratio (<5%) and high value of sun photometer-derived Angstrom exponent (> 1.2). However, lidar ratios between 25 and 40 sr are found during two Asian dust periods (October 20, 2009 and March 15, 2010), with 10~20% of particle depolarization ratio and the relatively low value of sun photometer-derived Angstrom exponent (< 0.39). The lidar ratio, particle depolarization ratio and color ratio are useful optical parameter to distinguish non-spherical coarse dust and spherical fine pollution aerosols. The comparison of aerosol extinction profiles determined from inelastic-backscatter signals by the Raman method and from elastic-backscatter signals by using the Fernald method with constant value of lidar ratio (50 sr) have shown that reliable aerosol extinction coefficients cannot be determined from elastic-backscatter signals alone, because the lidar ratio varies with aerosol types. A combined Raman and elastic backscatter lidar system can provide reliable information about the aerosol extinction profile and the aerosol lidar ratio.

Gravity Recovery and Climate Experiment (GRACE) 중력자료 해석을 위한 자료 처리 및 응용 (Data Reductions of Gravity Recovery and Climate Experiment (GRACE) Gravity Solutions and Their Applications)

  • 서기원
    • 한국지구과학회지
    • /
    • 제32권6호
    • /
    • pp.586-594
    • /
    • 2011
  • 2002년 4월에 발사된 Gravity Recovery and Climate Experiment(GRACE) 위성의 중력시간변화 측정을 통해, 기후 및 환경 변화에 의한 지구 내 질량 재배치 연구가 가능해 졌다. GRACE 중력 자료는 구면조화 함수의 계수인 중력 스펙트럼 형태로 제공이 되며, 이를 구면조화 함수를 이용하여 원하는 지역의 중력 변화 또는 질량 변화로 환산을 해야 한다. 하지만, GRACE 중력 자료는 측정 잡음 이외에도 공간적인 알리아스 에러가 존재하여, 질량 재배치 효과를 확인하기 위해서는 중력 스펙트럼의 처리 과정이 필요하다. 이 연구에서는 GRACE 자료를 처리하는 가장 일반적인 방법을 소개하고, 처리된 중력 자료를 이용한 연구 사례를 소개하였다. GRACE 중력 자료를 이용하여 광범위한 지구과학 연구가 진행 중이지만, 그 중 가장 활발한 연구 분야인 육지의 물수지 연구, 빙하 변화 연구 그리고 해수면 상승 연구 등을 중심으로 소개하였다. GRACE 위성과 유사한 인공위성 중력 관측 사업이 2020년까지 계획되어 있으며, 향후 수십년간 축적된 인공위성 중력 자료는 지구 환경 변화 연구에 핵심적인 자료로 활용될 것으로 기대된다.

Normal Mode Approach to the Stability Analysis of Rossby-Haurwitz Wave

  • Jeong, Hanbyeol;Cheong, Hyeong Bin
    • 한국지구과학회지
    • /
    • 제38권3호
    • /
    • pp.173-181
    • /
    • 2017
  • The stability of the steady Rossby-Haurwitz wave (R-H wave) in the nondivergent barotropic model (NBM) on the sphere was investigated with the normal mode method. The linearized NBM equation with respect to the R-H wave was formulated into the eigenvalue-eigenvector problem consisting of the huge sparse matrix by expanding the variables with the spherical harmonic functions. It was shown that the definite threshold R-H wave amplitude for instability could be obtained by the normal mode method. It was revealed that some unstable modes were stationary, which tend to amplify without the time change of the spatial structure. The maximum growth rate of the most unstable mode turned out to be in almost linear proportion to the R-H wave amplitude. As a whole, the growth rate of the unstable mode was found to increase with the zonal- and total-wavenumber. The most unstable mode turned out to consist of more-than-one zonal wavenumber, and in some cases, the mode exhibited a discontinuity over the local domain of weak or vanishing flow. The normal mode method developed here could be readily extended to the basic state comprised of multiple zonalwavenumber components as far as the same total wavenumber is given.

Rossby Waves and Beta Gyre Associated with Tropical Cyclone-scale Barotropic Vortex on the Sphere

  • Nam, Ye-Jin;Cheong, Hyeong-Bin
    • 한국지구과학회지
    • /
    • 제41권4호
    • /
    • pp.344-355
    • /
    • 2020
  • Tropical cyclone scale vortices and associated Rossby waves were investigated numerically using high-resolution barotropic models on the global domain. The equations of the barotropic model were discretized using the spectral transform method with the spherical harmonics function as orthogonal basis. The initial condition of the vortex was specified as an axisymmetric flow in the gradient wind balance, and four types of basic zonal states were employed. Vortex tracks showed similar patterns as those on the beta-plane but exhibited more eastward displacement as they moved northward. The zonal-mean flow appeared to control not only the west-east translation but also the meridional translation of the vortex. Such a meridional influence was revealed to be associated with the beta gyre and the Rossby wave, which are formed around the vortex due to the beta effect. In the case of the basic zonal state of climatological mean, the meridional translation speed reached the maximum value when the vortex underwent recurving.