• 제목/요약/키워드: Spent Nuclear Fuel Transport Cask

검색결과 45건 처리시간 0.028초

On the Particle Swarm Optimization of cask shielding design for a prototype Sodium-cooled Fast Reactor

  • Lim, Dong-Won;Lee, Cheol-Woo;Lim, Jae-Yong;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.284-292
    • /
    • 2019
  • For the continuous operation of a nuclear reactor, burnt fuel needs to be replaced with fresh fuel, where appropriate (ex-vessel) fuel handling is required. Particularly for the Sodium-cooled Fast Reactor (SFR) refueling, its process has unique challenges due to liquid sodium coolant. The ex-vessel spent fuel transportation should concern several design features such as the radiation shielding, decay-heat removal, and inert space separated from air. This paper proposes a new design optimization methodology of cask shielding to transport the spent fuel assembly in a prototype SFR for the first time. The Particle Swarm Optimization (PSO) algorithm had been applied to design trade-offs between shielding and cask weight. The cask is designed as a double-cylinder structure to block an inert sodium region from the air-cooling space. The PSO process yielded the optimum shielding thickness of 26 cm, considering the weight as well. To confirm the shielding performance, the radiation dose of spent fuel removed at its peak burnup and after 1-year cooling was calculated. Two different fuel positions located during transportation were also investigated to consider a functional disorder in a cask drive system. This study concludes the current cask design in normal operations is satisfactory in accordance with regulatory rules.

Evaluation of the KN-12 Spent Fuel Transport Cask by Analysis

  • Chung, Sung-Hwan;Lee, Heung-Young;Song, Myung-Jae;Rudolf Diersch;Reiner Laug
    • Nuclear Engineering and Technology
    • /
    • 제34권3호
    • /
    • pp.187-201
    • /
    • 2002
  • The KN-12 cask is designed to transport 12 PWR spent nuclear fuels and to comply with the requirements of Korea Atomic Energy Act, IAEA Safety Standards Series No.57-1 and US 10 CFR Part 71 for a Type B(U)F package. It provides containment, radiation shielding, structural integrity, criticality control and heat removal for normal transport and hypothetical accident conditions. W.H 14$\times$14, 16$\times$16 and 17$\times$17 fuel assemblies with maximum allowable initial enrichment of 5.0 wt.%, maximum average burn-up of 50,000 MWD/MTU and minimum cooling time of 7 years being used in Korea will be loaded and subsequently transported under dry and wet conditions. A forged cylindrical cask body which constitutes the containment vessel is closed by a cask lid. Polyethylene rods for neutron shielding are arranged in two rows of longitudinal bore holes in the cask body wall. A fuel basket to accommodate up to 12 PWR fuel assemblies provides support of the fuels, control of criticality and a path to dissipate heat. Impact limiters to absorb the impact energy under the hypothetical accident conditions are attacked at the top and at the bottom side of the cask during transport. Handling weight loaded with water is 74.8 tons and transport weight loaded with water with the impact limiters is 84.3 tons. The cask will be licensed in accordance with Korea Atomic Energy Act 3nd fabricated in Korea in accordance with ASME B&PV Code Section 111, Division 3.

KN-12 운반용기를 이용한 고리 사용후핵연료 소내수송.저장 (On-Site Transport and Storage of Spent Nuclear Fuel at Kori NPP by KN-12 Transport Cask)

  • 정성환;백창열;최병일;양계형;이대기
    • 방사성폐기물학회지
    • /
    • 제4권1호
    • /
    • pp.51-58
    • /
    • 2006
  • 고리 원전 사용후핵연료 저장조의 저장용량을 확보하기 위하여 2002년부터 사용후핵연료 운반용기를 이용하여 400다발 이상의 PWR 사용후핵연료 집합체를 원전부지 내에 수송, 저장하였다. 이를 위하여 KN-12 운반용기, 관련장비 및 수송차량으로 구성되는 수송시스템을 구성하였다. KN-12 운반용기는 국내 원자력법 및 IAEA의 수송규정에 따라 설계, 제작되고, 정부로부터 인허가를 획득하였으며, 취급장비 역시 관련규정에 따라 구비하였다. 수송 저장작업은 2 대의 운반용기를 동시에 투입하여 수행하였으며, 모든 작업공정에 대하여 엄격한 품질관리 및 방사선 안전관리를 수행하여 수송 안전성을 확보하고 신뢰도를 제고하였다.

  • PDF

내충격성을 고려한 사용후연료 수송용기 내부구조물의 설계 연구 (Study on the Impact-proof Internal Structure Design of a Spent Nuclear Fuel Transport Cask)

  • 신태명;김갑순
    • 한국소음진동공학회논문집
    • /
    • 제19권4호
    • /
    • pp.370-377
    • /
    • 2009
  • A simple preliminary analysis is often useful to check a validity of design alternatives before the detailed analysis phase in the viewpoint of efficiency. This paper describes a preliminary analysis procedure for the selection among basket design candidates for the spent fuel shipping cask of Korean standard nuclear power plant. As the cask should maintain the structural integrity in hypothetical accident condition, the case of 9 m drop is significantly considered as the worst scenario among the accident conditions in structural design viewpoint in this paper. As basket design options, totally four different types are considered and analyzed in the point of structural integrity at drop impact and weldability for fabrication. As a result, an insertion round plate type with densely spaced supports turns out to be the best in both of the viewpoints, though the weld plate type shows a bit more design margin.

사보타주 공격으로 인한 사용후핵연료 운반용기 격납 실패시 핵연료 손상에 따른 방사선 영향 평가 (Evaluation of Radiation Effect on Damage to Nuclear Fuel of Spent Fuel Transport CASK due to Sabotage Attack)

  • 박기호;김종성;차건일;박창제
    • 한국압력기기공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.43-49
    • /
    • 2022
  • The purpose of this study is to evaluate the radiation effect on damage when the external shield of the spent nuclear fuel transport cask is damaged due to impact as the cause of an unexpected accident. The neutron and gamma-ray intensities and spectra are calculated using the ORIGEN-Arp module in the SCALE 6.2.4 code package(1) and then using MCNP6.2(2) code calculate the dose rate. In order to evaluate the radiation dose according to the size of damage caused by external impact, various sized holes of 0.3~13.7% are assumed in the outer shield of the cask to evaluate the sensitivity to the dose. In the case of radiation source leakage, damage to the nuclear fuel assembly is assumed to be up to 6% based on overseas test cases. When only the outer shield is damaged, the maximum surface dose is calculated as 3.12E+03 mSv/hr. However, if the radiation source is leaked due to damage to the nuclear fuel assembly, it becomes 7.00E+05 mSv/hr which is about 200 times greater than the former case.

고리 1호기의 기사용 핵연료 집합체 수송용기 설계에 관한 연구 (Design Study of A Spent Fuel Shipping Cask for Korea Nuclear Unit-1)

  • Moo Han Kim;Chang Sun Kang
    • Nuclear Engineering and Technology
    • /
    • 제14권4호
    • /
    • pp.196-203
    • /
    • 1982
  • 본 논문에서는 고리 1호기의 기사용 핵연료 집합체를 수송하기 위한 Cask를 설계하였다. 이를 위하여 고리 1호기의 기사용 핵연료 집합체로부터 방출되는 감마선과 중성자를 계산하여 MORSE 및 ANISN전산 코드로써 차폐 계산을 수행하였다. 그 결과, 9개의 집합체를 동시에 수송할 수 있는 Steel Cask가 가장 적합하다는 것을 밝혔다. 이 Steel Cask에 대한 안전성을 평가하기 위하여 연료봉의 중심 온도와 복재온도를 계산하여 핵연료의 용융점보다 훨씬 낮음을 증명하였다. 또한 KENO와 MORSE전산 코드를 사용하여 임계도 계산을 수행하여 미임계 상태임을 증명하였다. 이로써 9개의 기사용 핵연료 집합체를 동시에 수송할 수 있는 Steel Cask를 간단히 설계하였다.

  • PDF

Neutron Dose Rate Analysis of PWR Spent Fuel Transport Cask Using Monte Carlo Method

  • Do, Mahnsuck;Kim, Jong-Kyung;Yoon, Jeong-Hyoun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(2)
    • /
    • pp.847-852
    • /
    • 1995
  • A shielding analysis for KSC-7, the shipping cask for transporting the 7 PWR spent fuel assemblies, has been carried out. Radiation source term has been calculated on spent fuel with burnup of 50,000 MWD/MTU and 1.5 years cooling time by ORIGEN2 code. The shielding calculation for the cask has been made by using MCNP4A code with continuous cross section data library from ENDF/B-V. As a result of neutron dose rate analysis, another shielding calculational model on spent fuel shipping cask was provided which is using the Monte Carlo method.

  • PDF

사용후핵연료 운반용기 및 건식저장 기술 동향 (Technology Trends in Spent Nuclear Fuel Cask and Dry Storage)

  • 신중철;양종대;성운학;류승우;박영우
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.110-116
    • /
    • 2020
  • As the management plan for domestic spent nuclear fuel is delayed, the storage of the operating nuclear power plant is approaching saturation, and the Kori 1 Unit that has reached its end of operation life is preparing for the dismantling plan. The first stage of dismantling is the transfer of spent nuclear fuel stored in storage at plants. The spent fuel management process leads to temporary storage, interim storage, reprocessing and permanent disposal. In this paper, the technical issues to be considered when transporting spent fuel in this process are summarized. The spent fuels are treated as high-level radioactive waste and strictly managed according to international regulations. A series of integrity tests are performed to demonstrate that spent fuel can be safely stored for decades in a dry environment before being transferred to an intermediate storage facility. The safety of spent fuel transport container must be demonstrated under normal transport conditions and virtual accident conditions. IAEA international standards are commonly applied to the design of transport containers, licensing regulations and transport regulations worldwide. In addition, each country operates a physical protection system to reduce and respond to the threat of radioactive terrorism.

Preliminary data analysis of surrogate fuel-loaded road transportation tests under normal conditions of transport

  • JaeHoon Lim;Woo-seok Choi
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4030-4048
    • /
    • 2022
  • In this study, road transportation tests were conducted with surrogate fuel assemblies under normal conditions of transport to evaluate the vibration and shock load characteristics of spent nuclear fuel (SNF). The overall test data analysis was conducted based on the measured acceleration and strain data obtained from the speed bump, lane-change, deceleration, obstacle avoidance, and circular tests. Furthermore, representative shock response spectrums and power spectral densities of each test mode were acquired. Amplification or attenuation characteristics were investigated according to the load transfer path. The load attenuated significantly as it transferred from the trailer to the cask. By contrast, the load amplified as it transferred from the cask to the surrogate SNF assembly. The fuel loading location on the cask disk assembly did not exhibit a significant influence on the strain measured from the fuel rods. The principal strain was in the vertical direction, and relatively large strain values were obtained in spans with large spacing between spacer grids. The influence of the lateral location of fuel rods was also investigated. The fuel rods located at the side exhibited relatively large strain values than those located at the center. Based on the strain data obtained from the test results, a hypothetical road transportation scenario was established. A fatigue evaluation of the SNF rod was performed based on this scenario. The evaluation results indicate that no fatigue damage occurred on the fuel rods.

핵연료 수송용기의 방사선 차폐해석 (Radiation Shield Analysis for Spent Fuel Shipping Cask)

  • 조건우;김희원;권석근;곽은호;문석형
    • Journal of Radiation Protection and Research
    • /
    • 제10권2호
    • /
    • pp.148-154
    • /
    • 1985
  • KSC-1 핵연료 수송용기에 대한 방사선차폐해석을 QAD-CG, ANISN-KA, DOT 3.5등의 전산코드와 DLC-23/CASK의 핵단면적 자료를 사용하여 수행하였다. 운반물인 사용후 핵연료집합체로 부터 방출되는 중성자 및 감마선의 방사선원항은 ORIGEN-79 전산코드를 이용하여 평가하였다. 방사선차폐해석 결과, 1개의 가압경수로 사용후 핵연료집합체를 운반할 수 있는 KSC-1 핵연료수송용기는 정상적인 수송조건에서 뿐만 아니라 가상적인 사고수송조건하에서도 관련 법령에서 정하는 기준을 만족하고 있어 방사선차폐해석의 관점에서 볼 때, 그 안전성이 입증된다.

  • PDF