• 제목/요약/키워드: Spent Fuel Storage Rack

검색결과 19건 처리시간 0.025초

사용후핵연료 저장 시설의 중대사고 안전성 검토

  • 신태명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.331-336
    • /
    • 2011
  • When the Fukushima nuclear power plant accident occurred in March, a hydrogen explosion in the reactor building at the 4th unit of Fukushima plants lead to a big surprise because the full core of the unit 4 reactor had been moved and stored underwater at the spent nuclear fuel storage pool for periodic maintenance. It was because the potential criticality in the fuel storage pool by coolant loss may yield more severe situation than the similar accident happened inside the reactor vessel. In the paper, the safety state of the spent fuel storage pool and rack structures of the domestic nuclear plants would be reviewed and compared with the Fukushima plant case by engineering viewpoint of potential severe accidents.

  • PDF

Three-Dimensional Seismic Analysis for Spent Fuel Storage Rack

  • Lee, Gyu-Mahn;Kim, Kang-Soo;Park, Keun-Bae;Park, Jong-Kyun
    • Nuclear Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.91-98
    • /
    • 1998
  • Time history analysis is usually performed to characterize the nonlinear seismic behavior of a spent fuel storage rack(SFSR). In the past, the seismic analyses of the SFSR were performed with two-dimensional planar models, which could not account for torsional response and simultaneous multi-directional seismic input In this study, three-dimensional seismic analysis methodology is developed for the single SFSR using the ANSYS code. The 3D- Model can be used to determine the nonlinear behavior of the rack, i.e., sliding, uplifting, and impact evaluation between the fuel assembly and rack, and rack and the pool wall, This paper also reviews the 3-D modeling of the SFSR and the adequacy of the ANSYS for the seismic analysis. AS a result of the adquacy study, the method of ANSYS transient analysis with acceleration time history is suitable for the seismic analysis of highly nonlinear structure such as an SFSR but it isn't appropriate to use displacement time history of seismic input.

  • PDF

Experimental validation of the seismic analysis methodology for free-standing spent fuel racks

  • Merino, Alberto Gonzalez;Pena, Luis Costas de la;Gonzalez, Arturo
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.884-893
    • /
    • 2019
  • Spent fuel racks are steel structures used in the storage of the spent fuel removed from the nuclear power reactor. Rack units are submerged in the depths of the spent fuel pool to keep the fuel cool. Their free-standing design isolates their bases from the pool floor reducing structural stresses in case of seismic event. However, these singular features complicate their seismic analysis which involves a transient dynamic response with geometrical nonlinearities and fluid-structure interactions. An accurate estimation of the response is essential to achieve a safe pool layout and a reliable structural design. An analysis methodology based on the hydrodynamic mass concept and implicit integration algorithms was developed ad-hoc, but some dispersion of results still remains. In order to validate the analysis methodology, vibration tests are carried out on a reduced scale mock-up of a 2-rack system. The two rack mockups are submerged in free-standing conditions inside a rigid pool tank loaded with fake fuel assemblies and subjected to accelerations on a unidirectional shaking table. This article compares the experimental data with the numerical outputs of a finite element model built in ANSYS Mechanical. The in-phase motion of both units is highlighted and the water coupling effect is detailed. Results show a good agreement validating the methodology.

Analysis of the Nuclear Subcriticality for the High Density Spent Fuel Storage at PWR Plants

  • Koh, Duck-Joon;Yang, Ho-Yeon;Kim, Byung-Tae;Jo, Chang-Keun;Hokyu Ryu;Cho, Nam-Zin
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.470-475
    • /
    • 1998
  • The marginal nuclear criticality analysis for the high density spent fuel storage at a PWR plant was carried out by using the HELIOS and CASMO-3 codes. More than 20 % of the calculated reactivity saving effect is observed in this analysis. This mainly comes from the adoption of some important fission products and B-10 in the criticality analysis. By taking burnup and boron credits, the high capacity of the spent fuel storage rack can be more fully utilized, reducing the space of storage. Larger storage for a given inventory of spent fuel should result in remarkable cost savings and mort importantly reduce the risks to the public and occupational workers.

  • PDF

사용후핵연료 습식저장 시설의 중대사고 안전성 검토 (Safety Review of Severe Accident Senario for Wet Spent Fuel Storage Facility)

  • 신태명
    • 방사성폐기물학회지
    • /
    • 제9권4호
    • /
    • pp.231-236
    • /
    • 2011
  • 지난 2011년 3월의 후쿠시마 원전 사고시 원자로 건물에서의 연쇄적인 수소폭발이 발생하였을 때 관계자들은 제1원전 4호기의 폭발에 더욱 놀랐었는데 이는 그 당시 4호기는 정기보수를 위하여 원자로내 모든 핵연료를 저장조에 보관중이었기 때문이다. 저장조내 냉각수 유실로 노심에서 옮겨진 핵연료가 공기 중에 노출되어 수소가 발생하고 임계가 도달하였다면 더욱 심각할 수도 있기 때문이었는데 다행히 추후에 양호한 냉각수 상태가 확인되어 우려할 상황을 피할 수 있었다. 본 논문에서는 후쿠시마 원전 사고를 계기로 국내 원자력 발전소내 핵연료 임시 저장시설의 안전성과 관련하여 중대사고 관점에서 검토해 보고자 한다.

EFFECT OF STAINLESS STEEL PLATE POSITION ON NEUTRON MULTIPLICATION FACTOR IN SPENT FUEL STORAGE RACKS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.75-82
    • /
    • 2011
  • The neutron multiplication factor in spent fuel storage racks, in which a stainless steel plate encloses a fuel assembly, was evaluated according to the variation of distance between the fuel assembly and stainless steel plate, as well as the pitch. The stainless steel plate position with the lowest multiplication factor on each pitch consistently appeared as 6mm or 9mm away from the outmost surface of the fuel assembly. Because the stainless steel plate has a thermal neutron absorption cross section, its ability to absorb neutrons can work best only if it is installed at the position where thermal neutrons can be gathered most easily. Therefore, the stainless steel plate position should not be too close or too far away from the fuel assembly, but it should be kept a pertinent distance from the fuel assembly.

연소를 고려한 사용후핵연료저장조 핵임계 안전성분석에서 계산체제간의 편차결정 (A Determination of Bias between Calculational Methods for the Criticality Safety Analysis of Spent Fuel Storage Pool with Burnup Credit)

  • Byung Jin Jun;Chang-Kun Lee;Hee-Chun No
    • Nuclear Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.17-26
    • /
    • 1986
  • 연소를 고려하는 사용후핵연료저장조의 핵임계 안전성 분석에서 검증용 계산 체제와 rack계산 체제 사이의 편차를 신뢰성 있게 결정하는 방법을 시험하였다. 이를 위하여 고리 1호기의 사용후핵연료저장조를 연소를 고려하는 가장 조밀한 rack으로 개념설계하고, 핵연료의 농축도 및 연소도에 따라 증배계수를 계산하였다. 표준값 생산용 Monte Carlo 코드로는 KENO-IV를 그리고 실제 rack 설계용으로는 2차원 충돌화률 코드인 FATAC을 사용하였다. 이 두 계산의 결과를 상호 비교하여 계산 체제 사이의 편차와 이의 경향성 및 신뢰도를 평가하였다. 이 방법을 사용하면 확실한 신뢰도 근거를 마련할 수 있을 뿐만 아니라 반응도 여유면에서 기존의 방법보다 불리하지 않음이 입증되었다.

  • PDF

조밀화 핵연료 집합체 저장에 의한 울진 1&2호기의 사용후 핵연료 저장조 정화능력 해석 (Analysis of Water Purification Capability of the Spent Fuel Storage Pool Using Consolidated Fuel Storage in Uljin 1&2)

  • Lim, Chae-Joon;Park, Goon-Cherl;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.83-94
    • /
    • 1990
  • 울진 1&2호기의 사용후 핵연료 중간저장을 위한 기존 저장조용량확장 방안으로서 maximum density rack (MDR)에 consolidated fuel을 저 장하여 현 9/3 노심에서 32/3으로 확장할 경우 방사능 농도가 적정기준 이하로 유지될 수 있는지 여부를 분석하였다. 이를 위해 본 연구에서는 정화계통의 연속적 운전방식과 주기적 운전방식에 대한 저장용수중의 방사능 농도계산을 위한 두 가지 계산 모델을 만들어 상호비교 하였다. 이 결과 두 경우 모두 32/3 노심저장에 대하여 기존 정화계통으로는 기준치인 5$\times$1-$^{-4}$ $\mu$Ci/ml이하로 유지시킬 수 없었다. 따라서 기존의 시설변경이 불가피하며 그 방안으로 사용후 핵연료 저장조에서의 양이온 탈염기 수를 증가시키는 방법이 타당한 것으로 나타났다.

  • PDF

Sensitivity studies in spent fuel pool criticality safety analysis for APR-1400 nuclear power plants

  • Al Awad, Abdulrahman S.;Habashy, Abdalla;Metwally, Walid A.
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.709-716
    • /
    • 2018
  • A criticality safety analysis was performed for the APR-1400 spent fuel pool region-II to ensure the safe storage of spent fuel, with credit taken for depletion and in-rack neutron absorbers (Metamic panels). PLUS7 fuel assembly was modeled using TRITON-NEWT of SCALE-6.1. The burnup-dependent cross-section library was generated under limiting core-operating conditions with 5%-w U-235 initial enrichment. MCNP5 was used to evaluate the neutron multiplication factor in an infinite array of rack cells with the axially nonuniformly burnt PLUS7 assemblies under normal, abnormal, and accident conditions; including all biases and uncertainties. The main purpose of this study is to investigate reactivity variations due to the critical depletion and reactor operation parameters. The approach, assumptions, and modeling methods were verified by analyzing the contents of the most important fissile and the associated reactivity effects. The Nuclear Regulatory Commission (NRC) guidance on k-eff being less than 1.0 for spent fuel pools filled with unborated water was the main criterion used in this study. It was found that assemblies with 49.0 GWd/MTU and 5.0 w/o U-235 initial enrichment loaded in Region-II satisfy this criterion. Moreover, it was found that the end effect resulted in a positive bias, thus ensuring its consideration.