• 제목/요약/키워드: Speeded Up Robust Feature

검색결과 58건 처리시간 0.018초

A Feature-Based Robust Watermarking Scheme Using Circular Invariant Regions

  • Doyoddorj, Munkhbaatar;Rhee, Kyung-Hyung
    • 한국멀티미디어학회논문지
    • /
    • 제16권5호
    • /
    • pp.591-600
    • /
    • 2013
  • This paper addresses a feature-based robust watermarking scheme for digital images using a local invariant features of SURF (Speeded-Up Robust Feature) descriptor. In general, the feature invariance is exploited to achieve robustness in watermarking schemes, but the leakage of information about hidden watermarks from publicly known locations and sizes of features are not considered carefully in security perspective. We propose embedding and detection methods where the watermark is bound with circular areas and inserted into extracted circular feature regions. These methods enhance the robustness since the circular watermark is inserted into the selected non-overlapping feature regions instead of entire image contents. The evaluation results for repeatability measures of SURF descriptor and robustness measures present the proposed scheme can tolerate various attacks, including signal processing and geometric distortions.

PCA기반 검색 축소 기법을 이용한 SURF 매칭 속도 개선 (Speed Improvement of SURF Matching Algorithm Using Reduction of Searching Range Based on PCA)

  • 김원규;강동중
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.820-828
    • /
    • 2013
  • 영상에서 임의의 점에 대한 고유한 특징을 계산하는 알고리즘은 파노라마 영상의 제작, 스테레오 영상의 획득, 물체 인식, 이미지 분석 등에 다양하게 사용되는 중요한 요소이다. 일반적으로 어떤 점의 특징은 스칼라 형태가 아닌 벡터형태로 나타나게 되는데, 무수히 많은 특징 점들을 서로 비교하는 작업은 매우 많은 계산량을 요구한다. 본 연구에서는 영상의 특징점 계산에 SURF(speeded up robust features)를 이용하였고, 이미지로부터 추출된 특징을 PCA(principal component analysis)기법을 이용하여 벡터의 차원을 축소하여 연결리스트 자료구조에 정렬한 다음 특징을 비교하는 기법을 제안한다. 제안된 특징의 비교 방법을 적용할 경우 기존 방법의 매칭 정확도는 유지한 상태에서 계산시간을 줄일 수 있는 것을 실험을 통하여 확인하였다.

Efficient Detection of Direction Indicators on Road Surfaces in Car Black-Box for Supporting Safe Driving

  • Kim, Jongbae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권2호
    • /
    • pp.123-129
    • /
    • 2015
  • This paper proposes an efficient method to detect direction indicators on road surfaces to support drivers in driving safely using the Simulink model. In the proposed method, the ROIs are detected using the detection method of maximally stable extremal regions (MSER), and the road indicator regions are detected using the speeded up robust features (SURF) matching method for the corresponding point matching of the detected ROIs and the road indicator templates. Experiments on various road satiations show that the processing time of about 0.32 sec per frame was required, and a detection rate of 91% was achieved.

이동 로봇 주행을 위한 이미지 매칭에 기반한 레이저 영상 SLAM (Laser Image SLAM based on Image Matching for Navigation of a Mobile Robot)

  • 최윤원;김경동;최정원;이석규
    • 한국정밀공학회지
    • /
    • 제30권2호
    • /
    • pp.177-184
    • /
    • 2013
  • This paper proposes an enhanced Simultaneous Localization and Mapping (SLAM) algorithm based on matching laser image and Extended Kalman Filter (EKF). In general, laser information is one of the most efficient data for localization of mobile robots and is more accurate than encoder data. For localization of a mobile robot, moving distance information of a robot is often obtained by encoders and distance information from the robot to landmarks is estimated by various sensors. Though encoder has high resolution, it is difficult to estimate current position of a robot precisely because of encoder error caused by slip and backlash of wheels. In this paper, the position and angle of the robot are estimated by comparing laser images obtained from laser scanner with high accuracy. In addition, Speeded Up Robust Features (SURF) is used for extracting feature points at previous laser image and current laser image by comparing feature points. As a result, the moving distance and heading angle are obtained based on information of available points. The experimental results using the proposed laser slam algorithm show effectiveness for the SLAM of robot.

비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류 (Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications)

  • 모하마드 카이룰 이슬람;파라 자한;민재홍;백중환
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.12-20
    • /
    • 2011
  • 본 논문은 비디오 감시 장치에 사용되는 효율적인 물체 검출 및 분류 알고리즘을 제안한다. 이전 연구는 주로 Scale Invariant Feature Transform (SIFT)나 Speeded Up Robust Feature (SURF)와 같은 특정 형태의 특징을 이용해 물체를 검출하거나 분류하였다. 본 논문에서는 물체 검출 및 분류에 상호 작용하는 알고리즘을 제안한다. 이는 로컬 패치들로부터 얻어지는 텍스쳐나 컬러 분포 같은 서로 다른 특성을 갖는 특징값을 이용해 물체의 검출 및 분류율을 높인다. 물체 검출에는 특징점들의 공간적인 클러스터링을, 이미지 표현이나 분류에는 Bag of Words 모델과 Naive Bayes 분류기를 사용한다. 실험을 통해 제안한 기법이 로컬 기술자를 사용한 물체 분류기법보다 우수한 성능을 나타냄을 보인다.

적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법 (The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images)

  • 김재협;최봉준;천승우;이종민;문영식
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권11호
    • /
    • pp.43-52
    • /
    • 2014
  • 본 논문에서는 적외선 영상에서 영상 변위를 이용하여 기동 표적 영역을 탐지하고, SURF(Speeded Up Robust Features) 특징점에 대한 BAS(Beam Angle Statistics)를 이용하여 분류하는 시스템에 대하여 설명한다. 영상 기반 기술 분야에서 대표적인 대응점 정합 알고리즘인 SURF 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보이기 때문에 널리 사용되고 있다. SURF를 이용한 대부분의 객체 인식의 경우 특징점 추출과 정합의 과정을 수행하지만, 제안하는 기법은 표적의 기동 특성을 반영하여 영상의 변위 추정을 통하여 표적의 영역을 탐지하고 SURF 특징점 들의 기하구조를 판단함으로써 표적 분류를 수행한다. 제안하는 기법은 무인 표적 탐지/인지 시스템의 초기모델 구축을 위하여 연구가 진행되었으며, 모의 표적을 이용한 가상 영상과 적외선 실 영상을 이용하여 실험한 결과 약 73~85%의 분류 성능을 확인하였다.

스마트폰을 이용한 위치정보기반 AR 시스템에서의 부정합 현상 최소화를 위한 기법 (Error Correction Scheme in Location-based AR System Using Smartphone)

  • 이주용;권준식
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권2호
    • /
    • pp.179-187
    • /
    • 2015
  • 스마트폰의 보급 확산으로 다양한 콘텐츠가 등장하고 있다. 이러한 콘텐츠 중에서 위치 기반 서비스를 이용한 증강현실 응용프로그램의 필요성이 널리 대두되고 있다. 본 논문에서는 안드로이드 스마트폰을 이용한 위치정보기반 AR 시스템에서 발생하는 정합 오차를 컴퓨터 비전 기술을 이용하여 효과적으로 줄이는 방법을 제안한다. 위치정보 오차 누적 때문에 객체가 정확하게 정합되지 않는 부정합 현상 최소화를 위해 연산 속도는 유지하면서 연산량을 줄여 성능을 향상한 방법인 SURF(Speeded Up Robust Features)를 사용해 초기 특징점을 검출하고 검출된 특징점을 추적하여 모바일 환경에 적용한다. 위치정보 검색을 위해 GPS 정보를 사용하고 자세추정 및 방향 정보를 위해 자이로 센서, G-센서 등을 이용한다. 하지만 위치정보의 누적된 오차는 객체가 고정되지 않는 부정합 현상을 유발한다. 또한, 증강현실 기술은 구현하면서 많은 연산량이 필요하므로 모바일 환경에서 구현하는데 어려움이 발생한다. 제안된 방법은 모바일 환경에서 성능 저하를 최소화하고 비교적 간단하게 구현할 수 있어 기존 시스템 및 다양한 모바일 환경에서 유용하게 이용될 수 있다.

SURF(speed up robust feature)를 이용한 시점변화에 강인한 영상 매칭 (View invariant image matching using SURF)

  • 손종인;강민성;손광훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 하계학술대회
    • /
    • pp.222-225
    • /
    • 2011
  • 영상 매칭은 컴퓨터 비전에서 중요한 기초 기술 중에 하나이다. 하지만 스케일, 회전, 조명, 시점변화에 강인한 대응점을 찾는 것은 쉬운 작업이 아니다. 이러한 문제점을 보안하기 위해서 스케일 불변 특징 변환(Scale Invariant Feature Transform) 고속의 강인한 특징 추출(Speeded up robust features) 알고리즘등에 제안되었지만, 시점 변화에 있어서 취약한 문제점을 나타냈다. 본 논문에서는 이런 문제점을 해결하기 위해서 시점 변화에 강인한 알고리즘을 제안하였다. 시점 변화에 강인한 영상매칭을 위해서 원본 영상과 질의 영상간 유사도 높은 특징점들의 호모그래피 변환을 이용해서 질의 영상을 원본 영상과 유사하게 보정한 뒤에 매칭을 통해서 시점 변화에 강인한 알고리즘을 구현하였다. 시점이 변화된 여러 영상을 통해서 기존 SIFT,SURF와 성능과 수행 시간을 비교 함으로서, 본 논문에서 제안한 알고리즘의 우수성을 입증 하였다.

  • PDF

쿼드 어휘 트리를 이용한 장소 인식 방법 (Place Recognition Method Using Quad Vocabulary Tree)

  • 박서영;홍현기
    • 방송공학회논문지
    • /
    • 제21권4호
    • /
    • pp.569-577
    • /
    • 2016
  • 위치 기반 서비스(LBS; Location Based Service)를 위한 장소 인식 기술은 사용자 중심의 서비스를 위한 중요 기술 중 하나이다. 이미지 특징을 이용한 장소 인식 방법 중에서 FLANN(Fast Library for performing Approximate Nearest Neighbor)의 이미지 어휘 트리를 이용하면 처리 속도가 빠르지만 가려짐 등으로 인해 인식의 정확도가 높지 않다. 본 논문에서는 SURF(Speeded Up Robust Features)를 사용한 쿼드(quad) 어휘 트리 기반의 장소 인식 방법을 제안한다. 학습 단계에서 데이터베이스 이미지를 세 단계의 공간 피라미드로 표현하고 각 영역에 대한 어휘 트리를 구성한다. 질의 이미지도 세 단계의 공간 피라미드로 표현하고 각 단계별로 어휘 트리 기반 인식을 수행한다. 또한 매칭된 특징 간의 호모그래피(homography) 관계를 측정하고 이를 만족하는 영역의 개수를 고려함으로써 최종 인식의 성능을 향상시켰다.

주행로봇을 위한 GPU 기반의 고속 인공표식 인식 (GPU based Fast Recognition of Artificial Landmark for Mobile Robot)

  • 권오성;김영균;조영완;서기성
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.688-693
    • /
    • 2010
  • 주행 로봇 환경에서 비전 기반의 물체 인식은 물체의 주변 요소와 동적인 환경에 대한 다양한 영상처리 문제를 포함한다. SURF(Speeded Up Robust Features)는 영상의 크기와 회전변화에 강인하게 물체를 인식하는 알고리즘으로 많은 연구자에 의해 사용되고 있다. 하지만 SURF 기반의 영상처리 방법은 고차원의 벡터 성분을 사용하기 때문에 연산 과정에서 많은 시간을 소비하며, 그로 인해 실시간 시스템에서 수행의 어려움을 가지고 있다. 본 연구에서는 이러한 문제점을 해결하기 위해서, 연산량이 많은 SURF 처리 과정을 GPU(Graphics Processing Unit)에서 수행하도록 하여, 보다 빠른 영상 인식을 구현하고자 한다. NVIDIA의 CUDA 라이브러리를 이용하여 GPU 상의 수행 프로그램을 구현하고, 실험을 통해 이동 로봇의 속도와 영상의 크기변화에 따른 표식의 인식률 및 수행시간에 대해서 CPU와 성능을 비교한다.