• 제목/요약/키워드: Speed-power-rpm

검색결과 380건 처리시간 0.026초

디이젤 엔진에서 排氣管의 屈曲度가 排氣 騷音에 미치는 影響 (Effects of Exhaust Pipe Curvature on the Exhaust Noise of a Diesel Engine)

  • 문병수;김옥현;서정윤
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.392-398
    • /
    • 1986
  • 본 연구에서는 실험적 방법을 통하여 엔진 배기관의 굴곡 형상이 배기 소음에 미치는 영향에 대해서 고찰하였다. 엔진으로는 4기통, 배기량 2164cc의 디이젤 엔진 을 사용하였으며 엔진의 보통 사용 범위인 1200∼3200rpm, 드로틀밸브의 개방도 25∼를 100% 구간에서 실험을 수행하였다. 굴곡부의 형상으로는 대부분의 배기관 굴곡이 원 호 형태임을 고헌하여 원호형의 굴곡관과 관의 꺽임부의 영향을 고찰하기 위한 직각형 굴곡관의 두가지 형태를 택하였따. 각 엔진의 운전 조건에서 굴곡관의 형상 치수를 바꾸어 가며 배기 소음의 음압(sound pressure level, SPL)과 스펙트럼을 얻었으며 이 들을 상호 비교 검토하여 배기관 굴곡 형상의 주요 설계 변수에 의한 배기 소음의 영 향을 고찰하였다.

날개 형상에 따른 HVLS의 성능에 관한 연구 (AN INVESTIGATION ON HVLS FAN PERFORMANCE WITH DIFFERENT BLADE CONFIGURATIONS)

  • ;허남건;김영주;강현욱
    • 한국전산유체공학회지
    • /
    • 제19권4호
    • /
    • pp.80-85
    • /
    • 2014
  • High-volume low-speed (HVLS) fans are one category of ceiling fan installed in large enclosings such as warehouses, large barns and health clubs in order to generate comfortable air circulation. As a rotary blade, aerodynamic performance of a HVLS fan is predominantly related to its airfoil(s), and the pitch and twist angles. This paper first, investigates the effects of airfoil on the performances of three different HVLS fans with NACA 5414, 6413 and 7415 airfoils. The fans have six untwisted blades with the diameter of 6 m and rotate at 60 RPM. The blades pitch angels are $12^{\circ}$, $12^{\circ}$ and $13^{\circ}$, respectively. The results are presented in the form of the aerodynamic forces and moments, volumetric flow rate and streamlines. Regarding the volumetric flow of air, the results show that the model with NACA 7415 has the best performance. Hence, two other HVLS fans with the same airfoil but, with four and five blades are studied in order to investigate the effects of number of blades. From the point of view of air circulation still the six-bladed fan is the best one; however, the five-bladed fan is more efficient in power consumption.

500W급 마이크로 가스터빈 발전기 회전체-베어링부의 단열 및 냉각 성능에 대한 실험적 연구 (Experimental Study on Thermal Insulation and Cooling for Rotor/Bearing Area in 500W Class Micro Gas Turbine Generator)

  • 박철훈;최상규;함상용
    • 한국유체기계학회 논문집
    • /
    • 제17권3호
    • /
    • pp.19-24
    • /
    • 2014
  • Development of long-term mobile energy sources for mobile robots or small-sized unmanned vehicles are actively increasing. The micro gas turbine generator (MTG) is a good candidate for this purpose because it has both of high energy density and high power density, and 500W class MTG is under development. The designed MTG can be divided into 2 main parts. One part consists of motor/ generator and compressor, and the other one consists of combustor, recuperator and turbine. 500W class MTG is designed to operate at ultra-high speed of 400,000 rpm in high turbine temperature over $700^{\circ}C$ to improve the efficiency. Because the magnetism of NdFeB permanent magnet for the motor/generator could be degraded if the temperature is over $150-200^{\circ}C$, MTG needs the thermal insulation to block the heat transfer from combustor/turbine side to motor/generator side. Moreover, the motor/generator is allocated to get the cooling effect from the rapid air flow by the compressor. This study presents the experimental results to verify whether the thermal insulator and air flow are effective enough to keep the motor/generator part in the low temperature less than $100^{\circ}C$. From the motoring test by using the high temperature test rig, it was confirmed that the motor/generator part could maintain the temperature less than $50^{\circ}C$ under the condition of 1.0 bar compressed air.

직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구 (A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine)

  • 김기복;최일동;하지훈;김치원;윤창식
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.

수집형 마늘 수확기 설계·제작 및 성능평가 (Design·Manufacture and Performance Evaluation of Gathering Type Garlic Harvesting Machine)

  • 최일수;강나래;최경식;우제근;김영화;유승화;최용;김영근
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.64-70
    • /
    • 2023
  • Garlic is classified as one of the three essential seasoning vegetables in Korea. In 2023, it was reported that the area under garlic cultivation was 24,700 ha, and the production stood at 318,220 tons. Garlic harvesting mechanization currently stands at 43.8%, and garlic is still collected manually after digging out using diggers, so the process is labor intensive. To reduce garlic production costs and enhance competitiveness, it is necessary to develop a high-performance gathering type harvester in place of the digging type harvester. Therefore, in this study, a gathering-type garlic harvester that can dig and collect simultaneously was designed and manufactured, and the harvest performance by factor was analyzed through a harvest performance test. As a result of the performance test, it was analyzed to perform optimally at a driving speed of 0.11m/s and a transfer speed of 85rpm. Work performance was calculated using the results obtained from the factor performance test.

감마선 조사가 전분류의 점도 및 이화학적 특성에 미치는 영향 (Effect of Gamma Irradiation on Viscosity and Physicochemical Properties of Starches)

  • 안경아;조덕조;김현구;김성곤;권중호
    • 한국식품과학회지
    • /
    • 제36권4호
    • /
    • pp.547-552
    • /
    • 2004
  • 방사선 조사 전분류의 확인방법 연구의 일환으로 0, 1.5, 3.0, 4.5 및 6.0 kGy의 감마선을 조사한 옥수수 전분, 고구마 전분 및 감자 전분을 대상으로 일정 조건에서 조사선량별 점도를 Brookfield DV-III programmable rheometer를 사용하여 측정하였다. 전분 현탁액의 농도를 옥수수 전분 8.0%(건물량 7.2%), 고구마 전분 8.5%(건물량 7.3%) 및 감자 전분 9.0%(건물량 7.3%)로 조제하여 100rpm에서 점도를 측정한 결과, 모든 시료에서 조사선량이 증가함에 따라 점도가 유의적으로 감소하였고 (p<0.05), 각각 $R^2$ 0.9754, 0.9618 및 0.9888의 높은 상관성이 확인되었다. 또한 1.5 kGy 조사선량에서도 옥수수 전분 34%, 고구마 전분 57%, 감자전분 51%의 점도 감소가 일어나 저선량 조사의 경우에도 뚜렷한 점도 변화가 관찰되어 방사선 조사 전분류의 확인방법으로써 적용 가능성이 높은 것으로 나타났다. 점도 측정에 의한 조사여부 판별의 신뢰도를 높일 수 있는 보조적인 확인 marker로써 용해도, 팽윤력, 청가 및 알칼리수를 검토한 결과, 조사선량이 증가함에 따라 용해도 및 알칼리수는 유의적으로 증가(p<0.05)한 반면, 팽윤력은 유의적으로 감소(p<0.05)하는 경향이 확인되었다.

바이몰프형 압전세라믹 캔틸레버를 이용한 수력에너지 하베스터 모듈 제작 및 발전 특성 (Fabrication and Energy Harvesting Characteristics of Water Energy Harvester Using Piezoelectric Ceramic Bimorph Cantilever)

  • 김경범;김창일;윤지선;정영훈;남중희;조정호;백종후;남산;성태현
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.943-948
    • /
    • 2012
  • A new water energy harvester module, which is composed of piezoelectric bimorph cantilevers, harvesting circuit and a shaft with 16 impellers at a center axis, was fabricated for energy harvesting application. High energy density $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZT-CN) thick film obtained by tape casting method was used for the bimorph cantilever. The PZT-CN bimorph cantilever with a proof mass of 49 g exhibited extremely high output power of 22.5 mW (24 $mW//cm^3$) at resonance frequency of 11 Hz. In addition, the fabricated water energy harvester has a cylindrical structure with 48 bimorph cantilevers clamped at inner surface. A significantly high output power of 433 mW was obtained at a rotation speed of 120 rpm with a resistive load of $500{\Omega}$ for the water energy harvester.

A study on performance and smoke emission characteristics by blending low purity methanol in a DI diesel engine with the EGR rates of 0, 12.8 and 16.5%

  • Syaiful, Syaiful;Bae, Myung-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.701-710
    • /
    • 2013
  • The purpose of this study is to investigate experimentally the effect of low purity methanol (LPM) on performance and smoke emission characteristics by using a four-cycle, four-cylinder, water-cooled, direct injection diesel engine with EGR system. The experiments are performed by the change of engine load in the engine load ranges of 25 to 100% with an interval of 25% under the constant engine speed of 2000 rpm. The LPM in the fuel blends contained 24.88% water by volume. The blended fuel ratios of diesel oil to LPM are maintained at 100/0, 95/5, 90/10 and 85/15% on the volume basis. In this paper, EGR rates are varied in three conditions of 0, 12.8 and 16.5%. The result shows that the brake power of a blended fuel with 15% LPM is reduced more 11.1% than that of the neat diesel oil at the full load with the EGR rate of 16.5%. At this condition, also, the brake specific fuel consumption (BSFC) is increased by 3.2%, the exhaust gas temperature is decreased by 10.7%, the smoke opacity is decreased by 18.7% and the brake thermal efficiency is increased by 7.3%. The sharp reduction of smoke opacity for a blended fuel with the LPM content of 15% at the full load without EGR system is observed by 68.4% compared with that of the neat diesel oil due to the high oxygen content of LPM.

유성 볼밀을 사용한 MWCNT와 Al2O3의 혼합 분쇄 특성에 관한 연구 (Study on the Grinding Characteristic of MWCNT and Al2O3 Composite by Using Planetary Ball Mill)

  • 서창명;김영근;지명국;정효민;정한식
    • 동력기계공학회지
    • /
    • 제17권1호
    • /
    • pp.91-96
    • /
    • 2013
  • The present paper focuses on the fabrication of materials with higher thermal conductivity. Nanofluid is a novel transfer prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. The purpose of this study is making the nano-size particle. The experiment of MWCNT and $Al_2O_3$ was carried out using a planetary ball mill at several rotation speeds: 200 ~ 400 rpm. The results were examined using scanning electron microscope(SEM). In the case of the MWCNT, it could be more grinding into the small particle in the dry condition and it confirm in the case of the $Al_2O_3$ to be more grinding into the small particle contrary to the MWCNT in the wet condition. In the mixture grinding result of MWCNT and $Al_2O_3$, the dry condition showed the good result in low rotation speed than the wet condition.