• Title/Summary/Keyword: Speed-power characteristics

Search Result 1,744, Processing Time 0.035 seconds

Study on Vibration Characteristics after Applying Variable Speed Control to Constant Speed Fans used in a Power Plant (발전소 통풍계통의 가변속 적용 후 진동특성에 관한 연구)

  • Cho, C.W.;Song, O.S.;Yang, K.H.;Kim, G.Y.;Cho, S.T.;Moon, H.D.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.88-94
    • /
    • 2009
  • In this paper, vibration characteristics after applying variable speed control to fans with a rated speed used in a power plant are studied by performing experiments and analyzing finite element models. Then the campbell diagram is presented to verify the reason of the abnormal vibration measured from fan structure during variable operation of Forced Draft Fan & Induced Draft Fan. According to results, it is found that amplitude of acceleration increases abruptly when a 2X harmonic component meets the natural frequency of fan rotor. Therefore it is very important thing that investigate exactly dynamic characteristics for the rotor at variable speed zone before applying variable speed control to a rotor with a rated speed.

  • PDF

Investigation on Characteristics of the Baseline Controller for NREL 5 MW Wind Turbine (NREL 5 MW 풍력발전기의 기본 제어기에 대한 특성 고찰)

  • Kim, Jong-Hwa;Moon, Seok-Jun;Shin, Yun-Ho;Won, Moon-Chul
    • Journal of Wind Energy
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • The paper is focusing on investigating the control characteristics of the baseline controller of 5 MW wind turbine provided by NREL(National Renewable Energy Laboratory). The baseline controller consist of two control logics, a maximum power tracking control below the rated wind speed and a constant power control above the rated wind speed. In the low wind speed, the mean generator power for changing the turbulent intensity and the optimal constant is studied through numerical simulations using FAST program. On the other hand, the constant power control logic and the constant control logic are compared in the high wind speed. It is confirmed that optimal constant is closely related to the turbulent intensity in low wind speed region and the constant torque control has better performance than the constant power control with respect to mechanical load in high wind speed region.

A Study on 3 Shaft Hydromechanical Transmission Design Considering Power and Speed Characteristics (동력특성과 속도비를 고려한 3축 정유압 기계식 변속기의 설계 연구)

  • Sung, Duk-Hwan;Kim, Hyun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2615-2623
    • /
    • 2002
  • In this paper, a systematic design approach for a three shaft hydromechanical transmission(HMT) system is proposed by considering the power characteristics and speed ratio range. Using network analysis, possible configurations of the 3 shaft HMT are analyzed and it is found that the influence of HSU stroke on the power distribution of the HMT can be investigated by the network analysis. In addition, design methods are presented from the viewpoint of (1) power distribution and (2) speed ratio range. From the power distribution and the speed ratio range, a HMT configuration can be constructed, which minimizes the power circulation and provides the desired speed ranges. Based on the 3 shaft HMT analyses and the proposed design approach, a 3 shaft HMT is designed which provides 4 speeds in forward and 1 speed in reverse while keeping the power circulation less than 150% of the input power. It is expected that the design method suggested in this study can be used in a systematic design of the 3 shaft HMT.

Harmonics Measurement and Analysis for Korea High Speed Train Prototype (한국형 고속전철 시제차량 고조파 계측 및 분석)

  • Lee Tae-Hyung;Park Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1415-1419
    • /
    • 2004
  • It is essential to evaluate harmonic characteristics of high speed train using power electronics equipment such as converter-driven motor drives, battery chargers and auxiliary power supplies. The purpose of this study is to measure and analyze harmonics characteristics of korea high speed train prototype. This paper presents result of harmonics measurement and analysis of harmonics characteristics in terms of loading, speed and operation mode.

  • PDF

Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

Study on Spindle Motor's Power-Factor and Frictional Characteristics For Cutting Force Monitoring in a CNC Machine (CNC 공작기계의 절삭력 감지를 위한 주축모터의 역률 및 마찰특성에 관한 연구)

  • 홍성함;이병휘;허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.141-146
    • /
    • 2002
  • Real-time monitoring and control of the cutting force is essential for unmanned cutting process. Although the cutting force can be measured directly using tool dynamometers, their implementation is not feasible in industry due to high cost. Alternative approach is the cutting force estimation based on spindle drive models, but it requires the knowledge of their characteristics with the spindle speed variation. This paper investigates the power-factor and frictional characteristics of three-phase induction motors and determines its characteristics below and above the base speed, respectively. In order to realize the proposed cutting force monitoring system, a stand-alone DSP board was utilized. Its monitoring and control performance is evaluated in a CNC lathe.

  • PDF

Output Power Control of Wind Generation System using Estimated Wind Speed by Support Vector Regression

  • Abo-Khalil Ahmed G.;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.345-347
    • /
    • 2006
  • In this paper, a novel method for wind speed estimation in wind power generation systems is presented. The proposed algorithm is based on estimating the wind speed using Support-Vector-Machines for regression (SVR). The wind speed is estimated using the generator power-speed characteristics as a set of training vectors. SVR is trained off-line to predict a continuos-valued function between the system's inputs and wind speed value. The predicted off-line function as well as the instantaneous generator power and speed are then used to determine the unknown winds speed on-line. The simulation results show that SVR can define the corresponding wind speed rapidly and accurately to determine the optimum generator speed reference for maximum power point tracking.

  • PDF

선박에 있어서의 내연기관구동발전기의 속도안정도에 관한 연구

  • 하주식;노창주
    • 전기의세계
    • /
    • v.24 no.4
    • /
    • pp.63-70
    • /
    • 1975
  • The speed characteristics of the diesel engines driving alternators are very important because it is directly concerned to the quality of electric power especially when electric power is supplied by a single alternator. In this paper, the speed characteristics of th diesel engine, equipped with a centrifugal mechanical governor, driving an alternator is dealt when load changes stepwise. The all coefficients included in the block diagram of the speed control system are estimated by actual experiments and the effects of gain change of the governor in the speed characteristics are examined theoretically and experimentally. The obtained result seems to be satisfactory and very useful for the improvement of quality of electric power supplied by a single alternator driven by the diesel engine especially for electric power system of ships.

  • PDF

A comparison of the performance characteristics of large 2 MW and 3 MW wind turbines on existing onshore wind farms

  • Bilgili, Mehmet;Ekinci, Firat;Demirdelen, Tugce
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • The aim of the current study is to compare the performance of large 2 MW and 3 MW wind turbines operating on existing onshore wind farms using Blade Element Momentum (BEM) theory and Angular Momentum (AM) theory and illustrate the performance characteristic curves of the turbines as a function of wind speed (U∞). To achieve this, the measurement data obtained from two different Wind Energy Power Plants (WEPPs) located in the Hatay region of Turkey was used. Two different horizontal-axis wind turbines with capacities of 2 MW and 3 MW were selected for evaluation and comparison. The hub-height wind speed (UD), turbine power output (P), atmospheric air temperature (Tatm) and turbine rotational speed (Ω) data were used in the evaluation of the turbine performance characteristics. Curves of turbine power output (P), axial flow induction factor (a), turbine rotational speed (Ω), turbine power coefficient (CP), blade tip speed ratio (λ), thrust force coefficient (CT) and thrust force (T) as a function of U∞ were obtained for the 2 MW and 3 MW wind turbines and these characteristic curves were compared. Results revealed that, for the same wind speed conditions, the higher-capacity wind turbine (3 MW) was operating at higher turbine power coefficient rates, while rotating at lower rotational speed ratios than the lower-capacity wind turbine (2 MW).

Instantaneous Speed and Mechanical Inertia Moment Estimation for the improvement of the Low Speed Control Characteristics of Induction Machines (유도전동기 저속 운전 특성 개선을 위한 순시 속도 및 기계관성모먼트 추정)

  • Hyun, Dong-Seok;Kim, Nam-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.12-19
    • /
    • 1996
  • The purpose of this paper is the improvement of the speed control characteristics of induction machines suited the low resolution incremental-type encoder in a low speed region. In order to improve the control characteristics in a low speed range, we propose that the instantaneous speed control method by the instantaneous speed detection which is implemented by the disturbance torque observer. Also, in case of the speed control by the instantaneous speed detection, the simple estimation method of the mechanical inertia moment is proposed. We will the carry out the mathematical verification of the proposed theory by the theoretic advisement connected with the convergence relationship of the estimated inertia moment to the real mechanical inertia moment. Computer simulations and experiments by the IGBT inverter adopting DSP is performed to verify the proposed method.

  • PDF