• Title/Summary/Keyword: Speed sensorless

Search Result 649, Processing Time 0.03 seconds

Sensorless control of Switched Reluctance Motor for Electric AC Compressors of Electrical Vehicles (전기자동차 용 전동식 컴프레서를 위한 스위치드 릴럭턴스 모터의 센서리스 제어)

  • Jeon, Yong-Hee;Kim, Jaehyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.37-42
    • /
    • 2014
  • This paper discusses study of sensorless control of a variable speed switched reluctance motor (SRM) for electric AC compressors on electrical vehicles. A typical SRM drive requires a position sensor such as an encoder or hall sensor to measure the angular rotor position. However, harsh environment in electrical AC compressors for electric vehicles makes it difficult to use the position sensor in their motor drive system. Therefore, a sensorless control scheme for electric compressor motors utilizing magnetic characteristics of SRM with respect to position angle and phase current is proposed. The overall variable speed SRM drive with position sensorless control scheme has been modeled using Matlab/Simulink software and closed loop current control simulation is presented to validate the proposed sensorless drive control.

Performance Improvement of High Speed Operation for Sensorless based Synchronous Machine (회전자 위치센서 없는 동기전동기의 고속 운전 성능 개선)

  • Jung, Young-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.439-444
    • /
    • 2018
  • The performance improvement in the high speed region for the sensorless based synchronous machine drive is discussed in the paper. Conventional dynamic overmodulation method in the vector controlled AC driver requires some calculation of maximum amplitude of the applying voltage vector to limit its amplitude, which leads to increase the calculation time of microprocessor. For low performance microprocessor, this might be impossible to complete the control loop within limited control time. Thus, to reduce the calculation time, the constantly limited amplitude for applying voltage vector is tried in this paper to drive sensorless based synchronous motor. Certainly, there exists some errors in amplitude and phase angle between inverter voltage and calculating voltage in the sensorless algorithm. But, this errors are too small to prevent the high speed sensorless operation within overmodulation region. The validities of the proposed method is proved by the experimental results.

Sensorless Speed Control and Starting Algorithm using Current Control of SPM Synchronous Motor (영구자석 표면부착형 동기전동기의 전류제어기를 이용한 센서리스 기동방법 및 속도제어)

  • Baik, In-Cheol;Lee, Ju-Suk;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.523-529
    • /
    • 2013
  • A sensorless speed control of a permanent magnet synchronous motor(PMSM) which utilizes MRAS based scheme to estimate rotor speed and position is presented. Considering an error between real and estimated rotor position values, a state equation of PMSM in the synchronous d-q reference frame is represented. A state equation of model system which uses estimated speed and nominal parameter values is expressed. To minimize the errors between the derivatives of d-q axis currents of real and model system, MRAS based adaptation mechanisms for the estimation of rotor speed and position are derived. On the other hand, for the acceleration stage of motor just before the sensorless operation, an acceleration scheme using only d-axis current control is proposed. To show the validity of the proposed scheme, experimental works are carried out and evaluated. During acceleration stage, the acceleration scheme using only d-axis current command shows good acceleration performance and controlled current level. For the sensorless operation, at low speed (5% of rated speed), a good performance is observed.

Sensorless Control of High-speed Type PMSM in Wide Speed Range using an Iterative Adaptive Sliding Mode Observer (반복 적응 슬라이딩 모드 관측기를 이용한 초고속 영구자석형 동기 전동기의 전영역 센서리스 제어)

  • Kim, Jong-Moo;Choi, Jeong-Won;Lee, Suk-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.69-76
    • /
    • 2009
  • This paper describes sensorless high-speed control for 45,000rpm/22kw type PMSM by using iterative adaptive sliding mode observer. The proposed algorithm is based on sensorless vector control by on-line estimating the speed of rotor in the wide speed operating range between the starting operation. In addition, it shows the enhanced performance of the iterative adaptive observer by lessening its chattering and getting stable response in limited PWM period. The simulation and experiment results show the reliable performance of the proposed algorithm through starting to high speed operating range.

Robust Speed Control of Sensorless PMSM (영구자석 동기전동기의 강인한 센서리스 속도제어)

  • Lee, D.H.;Son, M.K.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.112-114
    • /
    • 1997
  • Recently sensorless PMSM is much studied for the industrial applications and home appliances. Most of sensorless algorithm are based on the motor equations of which coefficients are motor parameters. However, uncertainty of motor parameter effects the accuracy of speed estimation of PMSM. This paper investigates the robust speed control of sensorless PMSM which has robustness to parameter uncertainty or variation. The parameter compensation is performed through PI control of the speed error between the estimated speed and the real speed obtained from the measured current. The proposed algorithm is verified through the experiment.

  • PDF

Design of a Neuro-Fuzzy Observer for Speed-Sensorless Control of DC Servo Motor (직류 서보 전동기 센서리스 속도제어를 위한 뉴로-퍼지 관측기 설계)

  • Ahn, Chang-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.3
    • /
    • pp.129-135
    • /
    • 2007
  • This paper deals with speed-sensorless control of DC servo motor using Neuro-Fuzzy Observer. DC servo motor has very low rotor inertia and excellent response characteristic and it is very useful to control torque and speed. It is easy to detect the voltage and current and resolver or encoder is used to measure a rotor speed. But it has a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system. To solve this problem, it is studied to detect a speed of DC servo motor without sensor. In particular, study on the method to estimate the speed using the observer is performed a lot. In this paper, the gain of the observer is properly set up using the Neuro-Fuzzy control and Neuro-Fuzzy Observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. It calculates the differentiation of the rotor current directly using the rotor current measured in the DC servo motor and estimates the speed of the rotor using the differentiation. Proposed speed sensorless control method is performed using the estimated speed. Also, it is proved feasibility of the proposed observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200[w] DC servo motor starting system.

Sensorless Transition Algorithm of PM Synchronous Motor by Load Torque Estimation (영구자석동기전동기의 부하추정을 통한 센서리스 전환 알고리즘)

  • Kim, Dong-Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.349-356
    • /
    • 2021
  • Permanent magnet synchronous motors are mainly used in the traction of electric vehicle and home application products including air-conditioners and refrigerators. For sensorless control without rotor position sensors, I-F control is applied for initial starting at low speeds, and mode is changed to sensorless control when the rotor speed is sufficiently accelerated for estimating rotor position. When the mode is changed to the sensorless control from the open-loop starting, the initial integral value of the speed controller should be considered by load condition; otherwise, the transition to sensorless control may fail. The sensorless transfer algorithm of PM synchronous motor based on load condition for smooth transition is proposed. The performance of the proposed sensorless transfer algorithm was verified by experiments.

Sensorless Speed Control of PMSM Considering Parameter Variation (파라메터 변동을 고려한 PMSM의 센서리스 속도제어)

  • Lee, D.H.;Shin, K.J.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.9-11
    • /
    • 1998
  • Most of sensorless algorithms are based on motor equations including electrical and mechanical parameters. However, parameter variation and uncertain error decrease the accuracy of speed estimation of PMSM. This paper investigates the sensorless speed control of PMSM considering parameter variation. The proposed algorithm use the speed compensator which is robust in parameter variation and error. The simulation and experimental results indicate good performances.

  • PDF

Sensorless Vector Control Using Tabu Search Algorithm (타부 탐색을 이용한 센서리스 벡터 제어)

  • Lee, Yang-Woo;Park, Kyung-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2625-2632
    • /
    • 2009
  • Recently, a speed control method of induction motor by vector control theory is applied to highly efficient industrial field. The speed sensors attached to motor are used for detection of rotating speed. In the case using speed sensor, the installation of cable for minimization of electric noise, weaken maintenance, increase of price are demerit. Therefore the study of speed sensorless vector control theory performed activity. The design of sensorless vector controller for induction motor using tabu search is studied. The proposed sensorless vector control for Induction Motor is composed of two parts. The first part is for optimizing the speed estimation with initial PI parameters. The second part is for optimizing the speed control with initial PI parameters using tabu search. Proposed tabu search is improved by neighbor solution creation using Triangular random distribution. In order to show the usefulness of the proposed method, we apply the proposed controller to the sensorless speed control of an actual AC induction Motor System. The performance of this approach is verified through simulation and the experiment.

Speed and Position Sensorless Control of SPMSM with Adaptive Observer (적응 관측기에 의한 SPMSM의 속도 및 위치 센서리스 제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Cha, Young-Doo;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • This paper is proposed the speed and position sensorless control of surface permanent magnet synchronous motor(SPMSM) with adaptive fuzzy and observer. A adaptive fuzzy controller is applied for speed control of SPMSM drive. A adaptive state observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of SPMSM, that employs a d - q rotating reference frame attached to the rotor. A adaptive observer is implemented to compute the speed and position feedback signal. The validity of the proposed sensorless scheme is confirmed by various response characteristics.