• 제목/요약/키워드: Speed Sensorless

검색결과 649건 처리시간 0.02초

전기자동차 용 전동식 컴프레서를 위한 스위치드 릴럭턴스 모터의 센서리스 제어 (Sensorless control of Switched Reluctance Motor for Electric AC Compressors of Electrical Vehicles)

  • 전용희;김재혁
    • 조명전기설비학회논문지
    • /
    • 제28권10호
    • /
    • pp.37-42
    • /
    • 2014
  • This paper discusses study of sensorless control of a variable speed switched reluctance motor (SRM) for electric AC compressors on electrical vehicles. A typical SRM drive requires a position sensor such as an encoder or hall sensor to measure the angular rotor position. However, harsh environment in electrical AC compressors for electric vehicles makes it difficult to use the position sensor in their motor drive system. Therefore, a sensorless control scheme for electric compressor motors utilizing magnetic characteristics of SRM with respect to position angle and phase current is proposed. The overall variable speed SRM drive with position sensorless control scheme has been modeled using Matlab/Simulink software and closed loop current control simulation is presented to validate the proposed sensorless drive control.

회전자 위치센서 없는 동기전동기의 고속 운전 성능 개선 (Performance Improvement of High Speed Operation for Sensorless based Synchronous Machine)

  • 정영석
    • 한국산업융합학회 논문집
    • /
    • 제21권6호
    • /
    • pp.439-444
    • /
    • 2018
  • The performance improvement in the high speed region for the sensorless based synchronous machine drive is discussed in the paper. Conventional dynamic overmodulation method in the vector controlled AC driver requires some calculation of maximum amplitude of the applying voltage vector to limit its amplitude, which leads to increase the calculation time of microprocessor. For low performance microprocessor, this might be impossible to complete the control loop within limited control time. Thus, to reduce the calculation time, the constantly limited amplitude for applying voltage vector is tried in this paper to drive sensorless based synchronous motor. Certainly, there exists some errors in amplitude and phase angle between inverter voltage and calculating voltage in the sensorless algorithm. But, this errors are too small to prevent the high speed sensorless operation within overmodulation region. The validities of the proposed method is proved by the experimental results.

영구자석 표면부착형 동기전동기의 전류제어기를 이용한 센서리스 기동방법 및 속도제어 (Sensorless Speed Control and Starting Algorithm using Current Control of SPM Synchronous Motor)

  • 백인철;이주석;김학원
    • 전력전자학회논문지
    • /
    • 제18권6호
    • /
    • pp.523-529
    • /
    • 2013
  • A sensorless speed control of a permanent magnet synchronous motor(PMSM) which utilizes MRAS based scheme to estimate rotor speed and position is presented. Considering an error between real and estimated rotor position values, a state equation of PMSM in the synchronous d-q reference frame is represented. A state equation of model system which uses estimated speed and nominal parameter values is expressed. To minimize the errors between the derivatives of d-q axis currents of real and model system, MRAS based adaptation mechanisms for the estimation of rotor speed and position are derived. On the other hand, for the acceleration stage of motor just before the sensorless operation, an acceleration scheme using only d-axis current control is proposed. To show the validity of the proposed scheme, experimental works are carried out and evaluated. During acceleration stage, the acceleration scheme using only d-axis current command shows good acceleration performance and controlled current level. For the sensorless operation, at low speed (5% of rated speed), a good performance is observed.

반복 적응 슬라이딩 모드 관측기를 이용한 초고속 영구자석형 동기 전동기의 전영역 센서리스 제어 (Sensorless Control of High-speed Type PMSM in Wide Speed Range using an Iterative Adaptive Sliding Mode Observer)

  • 김종무;최정원;이석규
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.69-76
    • /
    • 2009
  • This paper describes sensorless high-speed control for 45,000rpm/22kw type PMSM by using iterative adaptive sliding mode observer. The proposed algorithm is based on sensorless vector control by on-line estimating the speed of rotor in the wide speed operating range between the starting operation. In addition, it shows the enhanced performance of the iterative adaptive observer by lessening its chattering and getting stable response in limited PWM period. The simulation and experiment results show the reliable performance of the proposed algorithm through starting to high speed operating range.

영구자석 동기전동기의 강인한 센서리스 속도제어 (Robust Speed Control of Sensorless PMSM)

  • 이동희;손문경;권영안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.112-114
    • /
    • 1997
  • Recently sensorless PMSM is much studied for the industrial applications and home appliances. Most of sensorless algorithm are based on the motor equations of which coefficients are motor parameters. However, uncertainty of motor parameter effects the accuracy of speed estimation of PMSM. This paper investigates the robust speed control of sensorless PMSM which has robustness to parameter uncertainty or variation. The parameter compensation is performed through PI control of the speed error between the estimated speed and the real speed obtained from the measured current. The proposed algorithm is verified through the experiment.

  • PDF

직류 서보 전동기 센서리스 속도제어를 위한 뉴로-퍼지 관측기 설계 (Design of a Neuro-Fuzzy Observer for Speed-Sensorless Control of DC Servo Motor)

  • 안창환
    • 전기학회논문지P
    • /
    • 제56권3호
    • /
    • pp.129-135
    • /
    • 2007
  • This paper deals with speed-sensorless control of DC servo motor using Neuro-Fuzzy Observer. DC servo motor has very low rotor inertia and excellent response characteristic and it is very useful to control torque and speed. It is easy to detect the voltage and current and resolver or encoder is used to measure a rotor speed. But it has a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system. To solve this problem, it is studied to detect a speed of DC servo motor without sensor. In particular, study on the method to estimate the speed using the observer is performed a lot. In this paper, the gain of the observer is properly set up using the Neuro-Fuzzy control and Neuro-Fuzzy Observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. It calculates the differentiation of the rotor current directly using the rotor current measured in the DC servo motor and estimates the speed of the rotor using the differentiation. Proposed speed sensorless control method is performed using the estimated speed. Also, it is proved feasibility of the proposed observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200[w] DC servo motor starting system.

영구자석동기전동기의 부하추정을 통한 센서리스 전환 알고리즘 (Sensorless Transition Algorithm of PM Synchronous Motor by Load Torque Estimation)

  • 김동현;조관열;김학원
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.349-356
    • /
    • 2021
  • Permanent magnet synchronous motors are mainly used in the traction of electric vehicle and home application products including air-conditioners and refrigerators. For sensorless control without rotor position sensors, I-F control is applied for initial starting at low speeds, and mode is changed to sensorless control when the rotor speed is sufficiently accelerated for estimating rotor position. When the mode is changed to the sensorless control from the open-loop starting, the initial integral value of the speed controller should be considered by load condition; otherwise, the transition to sensorless control may fail. The sensorless transfer algorithm of PM synchronous motor based on load condition for smooth transition is proposed. The performance of the proposed sensorless transfer algorithm was verified by experiments.

파라메터 변동을 고려한 PMSM의 센서리스 속도제어 (Sensorless Speed Control of PMSM Considering Parameter Variation)

  • 이동희;신규재;권영안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.9-11
    • /
    • 1998
  • Most of sensorless algorithms are based on motor equations including electrical and mechanical parameters. However, parameter variation and uncertain error decrease the accuracy of speed estimation of PMSM. This paper investigates the sensorless speed control of PMSM considering parameter variation. The proposed algorithm use the speed compensator which is robust in parameter variation and error. The simulation and experimental results indicate good performances.

  • PDF

타부 탐색을 이용한 센서리스 벡터 제어 (Sensorless Vector Control Using Tabu Search Algorithm)

  • 이양우;박경훈
    • 한국정보통신학회논문지
    • /
    • 제13권12호
    • /
    • pp.2625-2632
    • /
    • 2009
  • 최근 효율적인 유도전동기 운전은 벡터제어에 의해 고성능 산업응용 분야에 쓰이고 있으며, 전동기 회전속도를 검출하기 위해 속도센서를 모터에 부착한다. 그러나 속도센서가 있으므로 나타나는 단점인 전기적 노이즈 발생을 최소화하도록 케이블 배치를 하여야 하며, 견고성이 떨어지고, 가격이 상승하는 등 단점이 많아 속도 센서가 없는 속도센서리스 벡터제어 이론에 대한 연구가 진행되어 왔다. 본 연구에서는 타부 탐색을 이용한 유도전동기의 센서리스 벡터제어기를 연구하였다. 제안된 유도전동기 센서리스 벡터제어기는 두 부분으로 구성되어 있다. 첫 번째 부분은 타부 탐색법을 이용하여 첫 번째는 속도 추정기 초기 PI 게인 파라미터를 최적화 하는 부분이며, 두 번째 부분은 속도 제어기 PI 게인 파라미터를 최적화 시키는 부분이다. 제안된 타부 탐색법은 이웃해 영역을 찾는 방법을 삼각형 랜덤 분포를 이용하여 탐색 성능을 향상 시켰다. 제안된 방법을 유도 전동기 센서리스 벡터제어기에 적용하였고 성능을 시뮬레이션과 실험으로 검증하였다. 그 결과 부하의 변동에도 안정적으로 동작하였으며 유용성을 입증하였다.

적응 관측기에 의한 SPMSM의 속도 및 위치 센서리스 제어 (Speed and Position Sensorless Control of SPMSM with Adaptive Observer)

  • 이홍균;이정철;차영두;정동화
    • 전기학회논문지P
    • /
    • 제54권1호
    • /
    • pp.1-7
    • /
    • 2005
  • This paper is proposed the speed and position sensorless control of surface permanent magnet synchronous motor(SPMSM) with adaptive fuzzy and observer. A adaptive fuzzy controller is applied for speed control of SPMSM drive. A adaptive state observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of SPMSM, that employs a d - q rotating reference frame attached to the rotor. A adaptive observer is implemented to compute the speed and position feedback signal. The validity of the proposed sensorless scheme is confirmed by various response characteristics.