• Title/Summary/Keyword: Speech signal analysis

Search Result 275, Processing Time 0.031 seconds

A Study on Wavelet Application for Signal Analysis (신호 해석을 위한 웨이브렛 응용에 관한 연구)

  • Bae, Sang-Bum;Ryu, Ji-Goo;Kim, Nam-Ho
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.302-305
    • /
    • 2005
  • Recently, many methods to analyze signal have been proposed and representative methods are the Fourier transform and wavelet transform. In these methods, the Fourier transform represents signal with combination cosine and sine at all locations in the frequency domain. However, it doesn't provide time information that particular frequency occurs in signal and denpends on only the global feature of the signal. So, to improve these points the wavelet transform which is capable of multiresolution analysis has been applied to many fields such as speech processing, image processing and computer vision. And the wavelet transform, which uses changing window according to scale parameter, presents time-frequency localization. In this paper, we proposed a new approach using a wavelet of cosine and sine type and analyzed features of signal in a limited point of frequency-time plane.

  • PDF

Statistical Voice Activity Defector Based on Signal Subspace Model (신호 준공간 모델에 기반한 통계적 음성 검출기)

  • Ryu, Kwang-Chun;Kim, Dong-Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.372-378
    • /
    • 2008
  • Voice activity detectors (VAD) are important in wireless communication and speech signal processing, In the conventional VAD methods, an expression for the likelihood ratio test (LRT) based on statistical models is derived in discrete Fourier transform (DFT) domain, Then, speech or noise is decided by comparing the value of the expression with a threshold, This paper presents a new statistical VAD method based on a signal subspace approach, The probabilistic principal component analysis (PPCA) is employed to obtain a signal subspace model that incorporates probabilistic model of noisy signal to the signal subspace method, The proposed approach provides a novel decision rule based on LRT in the signal subspace domain, Experimental results show that the proposed signal subspace model based VAD method outperforms those based on the widely used Gaussian distribution in DFT domain.

Pitch Period Detection Algorithm Using Modified AMDF (변형된 AMDF를 이용한 피치 주기 검출 알고리즘)

  • Seo Hyun-Soo;Bae Sang-Bum;Kim Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2006
  • Pitch period that is a important factor in speech signal processing is used in various applications such as speech recognition, speaker identification, speech analysis and synthesis. So many pitch detection algorithms have been studied until now. AMDF which is one of pitch period detection algorithms chooses the time interval from valley point to valley point as pitch period. In selection of valley point to detect pitch period, complexity of the algorithm is increased. So in this paper we proposed the simple algorithm using rotation transform of AMDF that detects global minimum valley point as pitch period of speech signal and compared it with existing methods through simulation.

A Study on the Technique of Spectrum Flattening for Improved Pitch Detection (개선된 피치검출을 위한 스펙트럼 평탄화 기법에 관한 연구)

  • 강은영;배명진;민소연
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.310-314
    • /
    • 2002
  • The exact pitch (fundamental frequency) extraction is important in speech signal processing like speech recognition, speech analysis and synthesis. However the exact pitch extraction from speech signal is very difficult due to the effect of formant and transitional amplitude. So in this paper, the pitch is detected after the elimination of formant ingredients by flattening the spectrum in frequency region. The effect of the transition and change of phoneme is low in frequency region. In this paper we proposed the new flattening method of log spectrum and the performance was compared with LPC method and Cepstrum method. The results show the proposed method is better than conventional method.

Robust Speech Hash Function

  • Chen, Ning;Wan, Wanggen
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.345-347
    • /
    • 2010
  • In this letter, we present a new speech hash function based on the non-negative matrix factorization (NMF) of linear prediction coefficients (LPCs). First, linear prediction analysis is applied to the speech to obtain its LPCs, which represent the frequency shaping attributes of the vocal tract. Then, the NMF is performed on the LPCs to capture the speech's local feature, which is then used for hash vector generation. Experimental results demonstrate the effectiveness of the proposed hash function in terms of discrimination and robustness against various types of content preserving signal processing manipulations.

Implementation of Speaker Independent Speech Recognition System Using Independent Component Analysis based on DSP (독립성분분석을 이용한 DSP 기반의 화자 독립 음성 인식 시스템의 구현)

  • 김창근;박진영;박정원;이광석;허강인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.359-364
    • /
    • 2004
  • In this paper, we implemented real-time speaker undependent speech recognizer that is robust in noise environment using DSP(Digital Signal Processor). Implemented system is composed of TMS320C32 that is floating-point DSP of Texas Instrument Inc. and CODEC for real-time speech input. Speech feature parameter of the speech recognizer used robust feature parameter in noise environment that is transformed feature space of MFCC(met frequency cepstral coefficient) using ICA(Independent Component Analysis) on behalf of MFCC. In recognition result in noise environment, we hew that recognition performance of ICA feature parameter is superior than that of MFCC.

CASA Based Approach to Estimate Acoustic Transfer Function Ratios (CASA 기반의 마이크간 전달함수 비 추정 알고리즘)

  • Shin, Minkyu;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.54-59
    • /
    • 2014
  • Identification of RTF (Relative Transfer Function) between sensors is essential to multichannel speech enhancement system. In this paper, we present an approach for estimating the relative transfer function of speech signal. This method adapts a CASA (Computational Auditory Scene Analysis) technique to the conventional OM-LSA (Optimally-Modified Log-Spectral Amplitude) based approach. Evaluation of the proposed approach is performed under simulated stationary and nonstationary WGN (White Gaussian Noise). Experimental results confirm advantages of the proposed approach.

Independent Component Analysis on a Subband Domain for Robust Speech Recognition (음성의 특징 단계에 독립 요소 해석 기법의 효율적 적용을 통한 잡음 음성 인식)

  • Park, Hyeong-Min;Jeong, Ho-Yeong;Lee, Tae-Won;Lee, Su-Yeong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.6
    • /
    • pp.22-31
    • /
    • 2000
  • In this paper, we propose a method for removing noise components in the feature extraction process for robust speech recognition. This method is based on blind separation using independent component analysis (ICA). Given two noisy speech recordings the algorithm linearly separates speech from the unwanted noise signal. To apply ICA as closely as possible to the feature level for recognition, a new spectral analysis is presented. It modifies the computation of band energies by previously averaging out fast Fourier transform (FFT) points in several divided ranges within one met-scaled band. The simple analysis using sample variances of band energies of speech and noise, and recognition experiments showed its noise robustness. For noisy speech signals recorded in real environments, the proposed method which applies ICA to the new spectral analysis improved the recognition performances to a considerable extent, and was particularly effective for low signal-to-noise ratios (SNRs). This method gives some insights into applying ICA to feature levels and appears useful for robust speech recognition.

  • PDF

A Study on a Improvement of the Speech Quality by Spectrum Analysis with Variable Window in CELP Vocoder (가변 윈도우 스펙트럼 분석을 이용한 CELP 부호화기의 음질 향상에 관한 연구)

  • 나덕수;민소연;배명진
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.106-109
    • /
    • 2000
  • There have been proposed two types of low bit rate vocoder upto now : One is MBE type using the spectrum modeling and another is CELP type using the hybrid coding method. CELP type vocoder has mainly studied between them. Specially, much of intensity is concentrated in CELP vocoder due to the emergence of Internet Phone and PCS in a domestic. In order to improve the speech quality in CELP vocoder, in this paper, we proposed a new spectrum analysis algorithm with variable window, In CELP vocoder, the spectrum of the synthesised speech signal is distorted because the fixed size windows is used for spectrum analysis. So we have measured the spectral leakage and in order to minimize the spectral leakage have adjusted the window size. Applying this method G.723.1 ACELP, we can get SD(Spectral Distortion) reduction 0.084(dB), residual energy reduction 6.3% and MOS(Mean Opinion Score) improvement 0.1.

  • PDF

An Applicability of Teager Energy Operator and Energy Separation Algorithm for Waveform Distortion Analysis : Harmonics, Inter-harmonics and Frequency Variation

  • Cho, Soo-Hwan;Hur, Jin;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1210-1216
    • /
    • 2014
  • This paper deals with an application of Teager Energy Operator (TEO) and Energy Separation Algorithm(ESA) to detect and determine various voltage waveform distortions like harmonics, inter-harmonics and frequency variation. Because the TEO and DESA algorithm was initially proposed for speech or communication analysis, its applications are limited to some types of waveform in the power quality analysis area. For example, an undistorted voltage signal is similar with a pure sinusoid. A voltage fluctuation is very similar with an amplitude-modulated signal, from the viewpoint of signal theory. And a continuous frequency variation is similar with a frequency-modulated signal, which is also known as a chirp signal. This paper is written to show that the TEO and DESA algorithm can be used for detecting occurrences of the representative waveform distortions and determining their instantaneous information of amplitude and frequency.