To resolve ambiguities in speech act classification, various machine learning models have been proposed over the past 10 years. In this paper, we review these machine learning models and present the results of experimental comparison of three representative models, namely the decision tree, the support vector machine (SVM), and the maximum entropy model (MEM). In experiments with a goal-oriented dialogue corpus in the schedule management domain, we found that the MEM has lighter hardware requirements, whereas the SVM has better performance characteristics.
한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회 및 제1회 형태소 분석기 및 품사태거 평가 워크숍
/
pp.40-43
/
1999
본 논문에서는 한국전자통신 연구원 지식정보 연구부에서 제안하는 자연어 정보처리 기술 표준안을 적용하여 품사 부착 말뭉치를 구축하는 과정에서 논란의 여지가 있었던 대표적인 사항들에 대해 기술한다. 아울러 ETRI 표준안이 도출된 원칙과 취지 등을 품사 부착 말뭉치 구축과 관련하여 설명하고, 현재의 ETRI 표준안이 앞으로 어떤 식으로 개선되어야 할 지에 대해 제안한다.
Prosodic characteristics of natural speech, especially intonation, in many cases represent specific feelings of the speaker at the time of the utterance, with relatively vast variations of speaking styles over the same text. We analyzed a collected speech corpus, recorded with ten Slovene speakers. Interpretation of observed intonation contours was done for the purpose of modelling the intonation contour in synthesis process. We devised a scheme for modeling the intonation contour for different types of intonation units based on the results of analyzing intonation contours. The intonation scheme uses a superpositional approach, which defines the intonation contour as the sum of global (intonation unit) and local (accented syllables or syntactic boundaries) components. Near-to-natural intonation contour was obtained by rules, using only the text of the utterance as input.
In order to produce high quality synthesized speech, it is very important to get an accurate grapheme-to-phoneme conversion and prosody model from texts using natural language processing. Robust preprocessing for non-Korean characters should also be required. In this paper, we analyzed Korean texts using a morphological analyzer, part-of-speech tagger and syntactic chunker. We present a new grapheme-to-phoneme conversion method, i.e. a dictionary-based and rule-based hybrid method, for unlimited vocabulary Korean TTS. We constructed a prosody model using a probabilistic method and decision tree-based method.
Voice conversion (VC) is a technique for modifying the speech signal of a source speaker so that it sounds as if it is spoken by a target speaker. Most previous VC approaches used a linear transformation function based on GMM to convert the source spectral envelope to the target spectral envelope. In this paper, we propose several nonlinear GMM-based transformation functions in an attempt to deal with the over-smoothing effect of linear transformation. In order to obtain high-quality modifications of speech signals our VC system is implemented using the Harmonic plus Noise Model (HNM)analysis/synthesis framework. Experimental results are reported on the English corpus, MOCHA-TlMlT.
Stressed vowels in English are usually produced using longer duration, higher pitch, and greater intensity than unstressed vowels. However, many English as a foreign language (EFL) learners have difficulty producing English lexical stress because their mother tongues do not have such features. In order to investigate if certain non-native English speakers (Korean, Japanese, and Taiwanese-Chinese native speakers) are able to produce English lexical stress in a native-like manner, speech samples were extracted from the L2 learners' corpus known as AESOP (the Asian English Speech cOrpus Project). Sixteen disyllabic words were analyzed in terms of the ratio of duration, pitch, and intensity. The results demonstrate that non-native English speakers are able to produce English stress in a similar way to native English speakers, and all speakers (both native and non-native) show a tendency to use duration as the strongest cue in producing stress. The results also show that the duration ratio of native English speakers was significantly higher than that of non-native speakers, indicating that native speakers produce a bigger difference in duration between stressed and unstressed vowels.
본 논문에서는 지식기반 기법에서 한국어 명사의 의미중의성 해소에 유용한 품사집합을 제시한다. 세종 형태의미분석 말뭉치에서 174,000 문장을 추출하여 테스트 셋으로 이용하고, 표준국어대사전의 뜻풀이와 용례를 이용하여 각 문장의 의미중의성을 해소하였다. 그 결과 전체 테스트 셋의 성능을 가장 좋게하는 15개의 품사집합과 단어별 평균을 가장 높게 하는 17 개의 품사집합이 제시되었다. 실험결과 45 개의 전체 품사집합을 이용하는 것보다 정확도가 최대 12%까지 향상되었다.
본 연구에서는 지지 벡터 기계(Support Vector Machines)를 이용하여 한국어 대화의 화행을 분석하는 방법을 제안한다. 우리는 발화의 어휘 및 품사와 이진 품사 쌍을 문장 자질로 사용하고 이전 발화의 문맥을 문맥 발화로 사용한다. 카이 제곱 통계량을 이용해 적절한 자질을 선택하고 선택된 자질로 지지 벡터 기계를 학습하였다. 학습된 지지 벡터 기계 분류기를 이용하여 각 발화의 화행을 분석하였다. 호텔 예약 영역의 말뭉치에 대해 제안된 시스템을 이용하여 실험한 결과 약 $90.54\%$의 정확률을 얻었다.
한국어 형태소 분석은 일반적으로 입력된 문장의 분석 후보를 다수 생성한 후, 그 중 최적의 후보를 선택하는 과정을 거친다. 분석 후보를 많이 생성할수록 올바른 분석이 포함될 가능성이 높아지지만 동시에 모호성이 증가한다는 문제가 생긴다. 이를 해결하기 위해 본 논문은 단일 후보를 생성하는 규칙 기반 분석 모형을 제안한다. 분석 규칙은 품사 부착 말뭉치를 통해 자동으로 추출되기 때문에 규칙 구축비용을 필요로 하지 않을 뿐만 아니라 높은 분석성공률을 보인다. 분석이 성공한 경우에는 단 하나의 분석 후보만을 생성하기 때문에 최적 후보 선택 단계에서의 모호성이 효과적으로 감소되고, 계산 복잡도 역시 줄어든다. 규칙 모형으로 분석이 실패한 경우를 대비해 기존 확률 기반 모형을 결합함으로써 형태소 분석 성능을 향상시킬 수 있다.
실제 언어생활에 있어서 여러 다양한 경제적 문화적 사회적 환경에 따라 다른 어휘가 사용되고, 각각의 다양한 환경에서 새롭게 신조어가 추가되는 등 어휘의 양적인 변화가 일어난다. 이러한 역동적인 언어 현실을 자동 발음열 생성기에 반영하기 위하여, 본 논문은 추가된 텍스트로부터 예외발음사전을 구축하는 방법을 제안하고, 이러한 방법으로 구축된 예외발음사전을 이용한 자동 발음열 생성 시스템의 성능을 실험하였다. 본 시스템에 대하여 ETRI에서 출시된 음성인식용 텍스트 코퍼스 가운데 한 달 동안의 신문기사를 모은 53,750문장 (740,497 어절)을 이용하여 실험한 결과 100%의 성능을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.