• Title/Summary/Keyword: Spectrum Prediction

Search Result 335, Processing Time 0.032 seconds

Vibrational Behavior of Ship Springing and Its Prediction (선박의 Springing 진동 현상과 예측 방법)

  • 이수목;정건화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1055-1060
    • /
    • 2001
  • Springing phenomena of ships is introduced with its concept, research history and approach methodology. Being a hydroelasticity problem, non-linear vibration and stochastic process, springing was formulated and modeled in vibration point of view separating hydrodynamic force into system properties and excitation force. Both RAO and response spectrum as well as wave spectrum were presented as a case study of springing analysis for a flexible vessel with wide breadth. The effect of advance speed, heading angle and loading condition were investigated as parametric study. The results and observations showed availability of analysis for the prediction of the ship springing behavior.

  • PDF

Handoff Scheme based on Adaptive Channel Prediction in Cognitive Radio Networks (인지무선네트워크에서 적응적 채널예측에 기반한 핸드오프기법)

  • Lee, Juhyeon;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2389-2396
    • /
    • 2014
  • Spectrum handoff is the process of exchanging progressing data transmission from the current channel to another idle channel. The essential goal of spectrum handoff in CR(Cognitive Radio) networks is to perform consistent data transmission while sustaining performance of ongoing transmission of secondary users. This handoff procedure can cause additional latency that eventually affects on the performance of CR transmission. Channel prediction method is expected to avoid the disruption to primary users and to reduce the handoff latency. In this paper, adaptive channel prediction is proposed to cope with time-varying channel and an adaptive channel prediction based proactive handoff procedure is designed to enhance data transmission performance.

Entropy-based Spectrum Sensing for Cognitive Radio Networks in the Presence of an Unauthorized Signal

  • So, Jaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.20-33
    • /
    • 2015
  • Spectrum sensing is a key component of cognitive radio. The prediction of the primary user status in a low signal-to-noise ratio is an important factor in spectrum sensing. However, because of noise uncertainty, secondary users have difficulty distinguishing between the primary signal and an unauthorized signal when an unauthorized user exists in a cognitive radio network. To resolve the sensitivity to the noise uncertainty problem, we propose an entropy-based spectrum sensing scheme to detect the primary signal accurately in the presence of an unauthorized signal. The proposed spectrum sensing uses the conditional entropy between the primary signal and the unauthorized signal. The ability to detect the primary signal is thus robust against noise uncertainty, which leads to superior sensing performance in a low signal-to-noise ratio. Simulation results show that the proposed spectrum sensing scheme outperforms the conventional entropy-based spectrum sensing schemes in terms of the primary user detection probability.

On Formant Extraction Based on Transfer Function

  • Jiang, Gang-Yi;Park, Tae-Young;Mei Yu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2E
    • /
    • pp.31-38
    • /
    • 1999
  • This paper focuses on extracting formants from transfer function, derived from linear prediction analysis of speech signal. The second derivative of the log magnitude spectrum of the transfer function, the first and third derivatives of the phase spectrum of the transfer function in the z-plane are discussed. Their resolutions of detecting formants are analyzed and some comparisons are given. Theoretical analyses and experimental results show that the third derivative of the phase spectrum decays more rapidly around the formant locations than the first derivative of the phase spectrum and the second derivative of the log magnitude spectrum. Compared with the second derivative of the log spectrum and the first derivative of the phase spectrum, the third derivative of the phase spectrum has higher resolution in frequency domain and provides more accurate formant extraction.

  • PDF

Comparison of Performance of Models to Predict Hardness of Tomato using Spectroscopic Data of Reflectance and Transmittance (토마토 반사광과 투과광 스펙트럼 분석에 의한 경도 예측 성능 비교)

  • Kim, Young-Tae;Suh, Sang-Ryong
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • This study was carried out to find a useful method to predict hardness of tomato using optical spectrum data. Optical spectrum of reflectance and transmittance data were collected processed by 9 kind of preprocessing methods-normalizations of mean, maximum and range, SNV (standard normal variate), MSC (multiplicative scatter correction), the first derivative and second derivative of Savitzky-Golay and Norris-Gap. With the preprocessed and non-processed original spectrum data, prediction models of hardness of tomato were developed using analytical tools of PLS (partial least squares) and MLR (multiple linear regression) and tested for their validation. The test of validation resulted that the analytical tools of PLS and MLR output similar performances while the transmittance spectra showed much better result than the reflectance spectra.

Connection Admission Control Using RA Based Dynamic Spectrum Hole Grouping in Multi-classes Cognitive Radio Networks (다중 클래스 인지 라디오 망에서 RA기반 동적 스펙트럼 홀 그룹핑에 의한 연결 수락 제어)

  • Lee, Jin-yi
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.219-225
    • /
    • 2022
  • In this paper, we propose a CAC exploring a RA based dynamic spectrum hole grouping for secondary users' QoS enhancement in multi-classes cognitive radio networks. The RA based dynamic spectrum hole grouping uses SU multi-classes overlaying spectrum structure suggested here. Multiclass SUs are divided into real and non real, and real SUs have a priority for resource utilization against non real. The amount of resource required by real SUs is supported by Wiener prediction and the dynamic spectrum hole grouping, and that required by non real SU is supported by the remained available amount without prediction. In the simulations, we compare the proposed CAC performances using the dynamic spectrum hole grouping in terms of SU connection's blocking(dropping) rate and resource utilization efficiency according to multi-classes traffic characteristics, and then we show the proposed CAC can guarantee the desired QoS of multi-classes secondary users.

Investigating the performance of different decomposition methods in rainfall prediction from LightGBM algorithm

  • Narimani, Roya;Jun, Changhyun;Nezhad, Somayeh Moghimi;Parisouj, Peiman
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.150-150
    • /
    • 2022
  • This study investigates the roles of decomposition methods on high accuracy in daily rainfall prediction from light gradient boosting machine (LightGBM) algorithm. Here, empirical mode decomposition (EMD) and singular spectrum analysis (SSA) methods were considered to decompose and reconstruct input time series into trend terms, fluctuating terms, and noise components. The decomposed time series from EMD and SSA methods were used as input data for LightGBM algorithm in two hybrid models, including empirical mode-based light gradient boosting machine (EMDGBM) and singular spectrum analysis-based light gradient boosting machine (SSAGBM), respectively. A total of four parameters (i.e., temperature, humidity, wind speed, and rainfall) at a daily scale from 2003 to 2017 is used as input data for daily rainfall prediction. As results from statistical performance indicators, it indicates that the SSAGBM model shows a better performance than the EMDGBM model and the original LightGBM algorithm with no decomposition methods. It represents that the accuracy of LightGBM algorithm in rainfall prediction was improved with the SSA method when using multivariate dataset.

  • PDF

Neuroimaging-Based Deep Learning in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder

  • Song, Jae-Won;Yoon, Na-Rae;Jang, Soo-Min;Lee, Ga-Young;Kim, Bung-Nyun
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.31 no.3
    • /
    • pp.97-104
    • /
    • 2020
  • Deep learning (DL) is a kind of machine learning technique that uses artificial intelligence to identify the characteristics of given data and efficiently analyze large amounts of information to perform tasks such as classification and prediction. In the field of neuroimaging of neurodevelopmental disorders, various biomarkers for diagnosis, classification, prognosis prediction, and treatment response prediction have been examined; however, they have not been efficiently combined to produce meaningful results. DL can be applied to overcome these limitations and produce clinically helpful results. Here, we review studies that combine neurodevelopmental disorder neuroimaging and DL techniques to explore the strengths, limitations, and future directions of this research area.

Investigation of random fatigue life prediction based on artificial neural network

  • Jie Xu;Chongyang Liu;Xingzhi Huang;Yaolei Zhang;Haibo Zhou;Hehuan Lian
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.435-449
    • /
    • 2023
  • Time domain method and frequency domain method are commonly used in the current fatigue life calculation theory. The time domain method has complicated procedures and needs a large amount of calculation, while the frequency domain method has poor applicability to different materials and different spectrum, and improper selection of spectrum model will lead to large errors. Considering that artificial neural network has strong ability of nonlinear mapping and generalization, this paper applied this technique to random fatigue life prediction, and the effect of average stress was taken into account, thereby achieving more accurate prediction result of random fatigue life.