• Title/Summary/Keyword: Spectroscopy

Search Result 10,562, Processing Time 0.045 seconds

Structural and Solubility Characteristics of Coenzyme Q10 Complexes Including Cyclodextrin and Starch (사이클로덱스트린과 전분을 이용한 coenzyme Q10 복합체의 특성 연구)

  • Lee, Joon-Kyoung;Lee, Hyun-Joo;Lim, Jae-Kag
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.180-188
    • /
    • 2014
  • This study focused on assessing the solubility and structural characteristics of two types of coenzyme $Q_{10}$ ($CoQ_{10}$) complexes: the $CoQ_{10}$-starch and the $CoQ_{10}$-cyclodextrin complexes. The solubility of $CoQ_{10}$-starch complex increased significantly as the temperature was increased. However, the solubility of $CoQ_{10}$-cyclodextrin complex reached a peak at $37^{\circ}C$, and strong aggregation occurred at $50^{\circ}C$. When the temperature was raised to $80^{\circ}C$, the $CoQ_{10}$-cyclodextrin complex dissociated owing to the weakening of bonds, resulting in $CoQ_{10}$ emerging at the surface of water. Therefore, $CoQ_{10}$-cyclodextrin complexes have lower solubility, due to their reduced heat-stability, than do the $CoQ_{10}$-starch complexes. Structural differences between the two $CoQ_{10}$ complexes were confirmed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD), and differential scanning calorimeter (DSC). The $CoQ_{10}$-cyclodextrin complex included an isoprenoid chain of $CoQ_{10}$, while the $CoQ_{10}$-starch complex included both the benzoquinone ring and the isoprenoid chain of $CoQ_{10}$. These results suggest that $CoQ_{10}$-starch complexes possess higher heat-stability and solubility than do the $CoQ_{10}$-cyclodextrin complexes.

Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate (초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과)

  • Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.68-74
    • /
    • 2013
  • For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{\mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{\mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{\circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{\mu}m$ with a fixed $2{\mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.

A STUDY ON THE DEGREE OF CONVERSION OF LIGHT CURING COMPOSITE RESIN ACCORDING TO THE DEPTH OF CURE AND LIGHT CURING TIME (수종 광중합 복합 레진의 중합 깊이와 광조사 시간에 따른 중합률에 관한 연구)

  • Kim, Kyung-Hyun;Kwon, Oh-Sung;Kim, Hyun-Gee;Baek, Kyu-Chul;Um, Chung-Moon;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.35-60
    • /
    • 1997
  • Physical properties of composite resins such as strength, resistance to wear, discoloration, etc, depend on the degree of conversion of the resin components. The clinical behavior of restorative resins varies brand to brand. Part of this variation is associated with the filler and differences in the polymer matrix. The polymer matrix of resins may differ because the involved monomers are dissimilar and because of variation in the catalyst system. The purpose of this study was to evaluate the degree of conversion of the composite resins according to the depth of cure and light curing time. 7mm diameter cylindrical aluminum molds were filled with each of five different hybrid light curing composite resins(Z-100, Charisma, Herculite XRV, Prisma TPH, Veridonfil) on the thin resin films. The molds were 1mm, 2mm, 3mm, 4mm, and 5mm in depth to produce resin films of various heights. Each sample was given 20sec, 40sec, and 60sec illumination with a light source. The degree of conversion of carbon double bonds to single bonds in the resin films was examined by means of Fourier Transform Infrared Spectrometer. The results were obtained as follows; 1. There was difference in the degree of conversion among five light curing composite resins according to the depth of cure for 20sec, 40sec, and 60sec illumination with light source with statistical significance(P<0.05). 2. Five light curing composite resins show lower degree of conversion at surface of the resin than depth of 1mm. 3. The degree of conversion of five light curing composite resins was siginificantly reduced from the maximum for the resin film when the light passed through as little as 1mm of each composite. 4. The degree of conversion of five light curing composite resins decrease significantly at the depth of 4mm, and polymerization was not occured at the depth of 5mm except for Prisma TPH. 5. The degree of conversion of five light curing composite resins was increased with increased light curing time, and there was no significant differences in the degree of conversion above 4mm in Z-100, 3mm in Charisma, and at depth of 5mm in Herculite XRV and Veridonfil(P>0.05).

  • PDF

Development of Prediction Model by NIRS for Anthocyanin Contents in Black Colored Soybean (근적외분광분석기를 이용한 검정콩 안토시아닌의 함량 분석)

  • Kim, Yong-Ho;Ahn, Hyung-Kyun;Lee, Eun-Seop;Kim, Hee-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • Near infrared reflectance spectroscopy (NIRS) is a rapid and accurate analytical method for determining the composition of agricultural products and feeds. This study was conducted to measure anthocyanin contents in black colored soybean by using NIRS system. Total 300 seed coat of black colored soybean samples previously analyzed by HPLC were scanned by NIRS and over 250 samples were selected for calibration and validation equation. A calibration equation calculated by MPLS(modified partial least squares) regression technique was developed in which the coefficient of determination for anthocyanin pigment C3G, D3G and Pt3G content was 0.952, 0.936, and 0.833, respectively. Each calibration equation was applied to validation set that was performed with the remaining samples not included in the calibration set, which showed high positive correlation both in C3G and D3G content file. In case Pt3G, the prediction model was needed more accuracy because of low $R^2$ value in validation set. This results demonstrate that the developed NIRS equation can be practically used as a rapid screening method for quantification of C3G and D3G contents in black colored soybean.

Determination of Gasoline Brands by the Comparison of Infrared Spectra of Polymeric Dispersants (청정분산제의 적외선 분광스펙트럼 비교를 통한 자동차용 휘발유 제조사의 판별)

  • Kim, Myeonghee;Jang, Youngsik;Jung, Chungseop;Lee, Hyunkee
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.469-473
    • /
    • 1998
  • The gasoline brands can be determined by gas chromatography. However, determining from the differences in chromatograms is sometimes ambiguous because the gasoline composition is becoming similar from refinery to refinery due to stringent regulations for the protection of the atmospheric environment. To determine the gasoline brands of five refineries in Korea, we have obtained and compared IR spectra of polymeric dispersants which are added to gasoline at several hundreds of ppm levels. Since the deposit control additives used by the five refineries in Korea are different from one another, it is possible to determine the gasoline brands by comparing their IR spectra. A strong and broad C-O stretch absorption peak appears at $1,096cm^{-1}$ for the additives used by A, B, and C refineries, which renders an easy differentiation of the additives from those of D and E refineries. The differentiation of all five gasoline brands are possible due to the characteristic vibrations present in each additive.

  • PDF

Development of high performance liquid chromatography assay method of diosmin capsules (디오스민 캡슐의 HPLC 분석법의 개발)

  • Shim, Dae Hyun;Shin, Dong Han;Truong, Quoc Ky;Mai, Xuan Lan;Kang, Jong-Seong;Woo, Mi Hee;Na, Dong-Hee;Chun, In-Koo;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.277-282
    • /
    • 2016
  • British Pharmacopoeia (BP 2013), the United States Pharmacopoeia (USP 39) and the Korean Pharmacopoeia (KP XI) contain monographs for the quality control of raw diosmin using high performance liquid chromatography (HPLC). However, official monographs detailing pharmaceutical formulations for diosmin are not available in foreign pharmacopoeias. In the KP XI, ultraviolet-visible (UV-Vis) spectroscopy-which is less specific than HPLC-is reported for the testing of diosmin capsules. In this study, we present an alternative HPLC assay for such testing that is more specific than UV-Vis methods. Method validation was performed to determine linearity, precision, accuracy, system suitability, and robustness. The linearity of calibration curves in the desired concentration range was high ($r^2$>0.999), while the RSDs for intra- and inter-day precision were 0.15-0.29 % and 1.05-1.74%, respectively. Accuracies ranged from 101.2-103.2 %, while the retention time and peak area RSDs were 0.37 % and 0.06 %, respectively. Additionally, the plate number and asymmetry factor values for diosmin were 3591.293 and 1.35, respectively. Since the intermediate-precision and robustness of the assay were satisfactory, this method will be a valuable addition to the Korean Pharmacopoeia (KP XI).

Performance Evaluation of Hazardous Substances using Measurement Vehicle of Field Mode through Emergency Response of Chemical Incidents

  • Lee, Yeon-Hee;Hwang, Seung-Ryul;Kim, Jae-Young;Kim, Kyun;Kwak, Ji Hyun;Kim, Min Sun;Park, Joong Don;Jeon, Junho;Kim, Ki Joon;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.294-302
    • /
    • 2015
  • BACKGROUND: Chemical accidents have increased owing to chemical usage, human error and technical failures during the last decades. Many countries have organized supervisory authorities in charge of enforcing related rules and regulations to prevent chemical accidents. A very important part in chemical accidents has been coping with comprehensive first aid tool. Therefore, the present research has provided information with the initial applications concern to the rapid analysis of hazardous material using instruments in vehicle of field mode after chemical accidents. METHODS AND RESULTS: Mobile measurement vehicle was manufactured to obtain information regarding field assessments of chemical accidents. This vehicle was equipped with four instruments including gas chromatography with mass spectrometry (GC/MS), Fourier Transform Infrared Spectroscopy (FT-IR), Ion Chromatography (IC), and UV/Vis spectrometer (UV) to analyses of accident preparedness substances, volatile compounds, and organic gases. Moreover, this work was the first examined the evaluation of applicability for analysis instruments using 20 chemicals in various accident preparedness substances (GC/MS; 6 chemicals, FT-IR; 2 chemicals, IC; 11 chemicals, and UV; 1 chemical) and their calibration curves were obtained with high linearity ( r 2 > 0.991). Our results were observed the advantage of the high chromatographic peak capacity, fast analysis, and good sensitivity as well as resolution. CONCLUSION: When chemical accidents are occurred, the posted measurement vehicle may be utilized as tool an effective for qualitative and quantitative information in the scene of an accident owing to the rapid analysis of hazardous material.

Trends in Rapid Detection Methods for Food-borne pathogenic Microorganisms by Using New Technologies (신기술 이용 식중독균 신속검출법 개발 동향 분석)

  • Kim, Hyun-Joo;Kim, Yong-Soo;Chung, Myung-Sub;Oh, Deog-Hwan;Chun, Hyang-Sook;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.376-387
    • /
    • 2010
  • Recently, speedy, convenient and easy detection technologies have been developed rapidly and on the contrary, studies on development of traditional detectors applying biochemical characteristics has gradually been decreased. This review examined trend in current studies on detection of food-borne pathogenic microorganisms in the fields of selective media, immuno-assay, Polymerase Chain Reaction (PCR), microarray, terahertz spectroscopy & imagination and so on. Most traditional methods to detect the organisms from food matrix rely on selective media and such a method have disadvantages like long time requirement and distinguishing one species only from each selective medium although they are highly economical. Various new convenient methods such as Enzyme Linked Immuno-sorbent Assay (ELISA), paper-strip kit, fluoroimmunoassay etc. have been developed. The most ideal method for detecting food-borne pathogenic microorganisms in foods should be accurate, convenient, rapid and economical. Additionally, it is needed that capabilities of quantitative analysis and automation to be applied to industries.

Isolation and Purification of Berberine in Cortex Phellodendri by Centrifugal Partition Chromatography (Centrifugal Partition Chromatography에 의한 황백으로부터 Berberine의 분리 및 정제)

  • Kim, Jung-Bae;Bang, Byung-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.3
    • /
    • pp.532-537
    • /
    • 2014
  • Cortex Phellodendri (CP) is derived from the dried bark of Phellodendron amurense. It has been widely used as a drug in traditional Korea medicine for treating diarrhea, jaundice, swelling pains in the knees and feet, urinary tract infections, and infections of the body surface. Many analytical methods have been used to study oriental herbal medicines, such as thin-layer chromatography, column liquid chromatography, and high performance liquid chromatography (HPLC). In this study, preparative centrifugal partition chromatography (CPC) was successfully carried out in order to separate pure compounds from a CP methanol extract. The optimum two-phase CPC solvent system was composed of n-butanol: acetic acid: water (4:1:5 v/v/v). The flow rate of the mobile phase was 3 mL/min in ascending mode with rotation at 1,000 rpm. The CPC-separated fraction and purification procedures were carried out by preparatory HPLC. The $^1H$ NMR spectrum revealed that the resonances at ${\delta}$ 4.10 and 4.20 ppm corresponded to three protons ($-OCH_3$), whereas those at ${\delta}$ 6.10 ppm corresponded to two protons ($-OCH_2O-$). Further, two aromatic protons (H-11 and H-12) conveys a doublet-doublet pattern. The H-11 doublet and H-12 doublet appear at ${\delta}$ 7.98 and 8.11, respectively. The $^{13}C$ NMR. spectrum showed a tetrasubstituted with a methylenedioxy group at C2 and C3, and two methoxy groups at C9 and C10. The chemical structure of the berberine was identified by $^1H$, $^{13}C$-nuclear magnetic resonance and electrospray ionization-mass spectroscopy spectral data analysis.

Preparation of Nickel Coated-carbon Nanotube/Zinc Oxide Nanocomposites and Their Antimicrobial and Mechanical Properties (니켈 코팅된 탄소나노튜브/산화아연 나노복합소재의 제조와 항균 및 기계적 특성 분석)

  • Kim, Hyeon-Hye;Han, Woong;An, Kay-Hyeok;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.502-507
    • /
    • 2016
  • This study was conducted to develop novel antimicrobial nano-composites, with the aim of fully utilizing antimicrobial properties of multi-walled carbon nanotubes (MWCNTs), nickel (Ni) and zinc oxide (ZnO). Ni coated-MWCNTs (Ni-CNT) were prepared and evaluated for their potential application as an antimicrobial material for inactivating bacteria. Field emission scanning electron microscopy (FE-SEM), and X-ray energy dispersive spectroscopy (EDS) were used to characterize the Ni coating and morphology of Ni-CNT. Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil) were employed as the target bacterium on antimicrobial activities. Comparing with the nitric acid treated MWCNTs and Ni-CNT which have been previously reported to possess antimicrobial activity towards S. aureus and E. coil, Ni-CNT/ZnO exhibited a stronger antimicrobial ability. The nickel coating was confirmed to play an important role in the bactericidal action of Ni-CNTs/ZnO composites. Also, the addition of ZnO to the developed nanocomposite is suggested to improve the antimicrobial property.