Browse > Article
http://dx.doi.org/10.14478/ace.2016.1071

Preparation of Nickel Coated-carbon Nanotube/Zinc Oxide Nanocomposites and Their Antimicrobial and Mechanical Properties  

Kim, Hyeon-Hye (R&D Division, Korea Institute of Carbon Convergence Technology)
Han, Woong (R&D Division, Korea Institute of Carbon Convergence Technology)
An, Kay-Hyeok (Department of Nano & Advanced Materials Engineering, Jeonju University)
Kim, Byung-Joo (R&D Division, Korea Institute of Carbon Convergence Technology)
Publication Information
Applied Chemistry for Engineering / v.27, no.5, 2016 , pp. 502-507 More about this Journal
Abstract
This study was conducted to develop novel antimicrobial nano-composites, with the aim of fully utilizing antimicrobial properties of multi-walled carbon nanotubes (MWCNTs), nickel (Ni) and zinc oxide (ZnO). Ni coated-MWCNTs (Ni-CNT) were prepared and evaluated for their potential application as an antimicrobial material for inactivating bacteria. Field emission scanning electron microscopy (FE-SEM), and X-ray energy dispersive spectroscopy (EDS) were used to characterize the Ni coating and morphology of Ni-CNT. Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil) were employed as the target bacterium on antimicrobial activities. Comparing with the nitric acid treated MWCNTs and Ni-CNT which have been previously reported to possess antimicrobial activity towards S. aureus and E. coil, Ni-CNT/ZnO exhibited a stronger antimicrobial ability. The nickel coating was confirmed to play an important role in the bactericidal action of Ni-CNTs/ZnO composites. Also, the addition of ZnO to the developed nanocomposite is suggested to improve the antimicrobial property.
Keywords
antimicrobial; nano-composites; zinc oxide; nickel coating;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 S. Mallakpour and A. Zadehnazari, Preparation of dopamine-functionalized multi-wall carbon nanotube/poly (amide-imide) composites and their thermal and mechanical properties, New Carbon Mater., 31, 18-30 (2016).   DOI
2 N. G. Sahoo, S. Rana, J. W. Cho, L. Li, and S. H. Chan, Polymer nanocomposites based on functionalized carbon nanotubes, Prog. Polym., Sci., 35, 837-867 (2010).   DOI
3 Ihsanullah, T. Laoui, A. M. Al-Amer, A. B. Khalil, A. Abbas, M. Khraish, and M. A. Atieh, Novel anti-microbial membrane for desalination pretreatment: A silver nanoparticle-doped carbon nanotube membrane, Desalination., 376, 82-93 (2015).   DOI
4 S. Dhall and N. Jaggi, Effect of oxide nanoparticles on structural properties of multiwalled carbon nanotubes, Theochem., 1107, 300-304 (2016).
5 S. T. Kim, H. Y. Park, T. K. No, D. G. Kang, I. R. Jeon, and K. H. Seo, Effect of wrapping treatment on the dispersion of MWNT in CNT/ABS/SAN composites, Appl. Chem. Eng., 23, 372-376 (2012).
6 D. Jeong, I. Song, and Y. Kim, Degrading and flocculating property of a bacterium isolated from the extract of earthworm, J. Korea Org. Resour. Recycl. Assoc., 14, 141-150 (2006).
7 S. Yeo and G. Kim, The design and fabrication of unattended food waste treatment system, J. Korean Soc. Comput. Inf., 23, 95-98 (2015).
8 M. Choi and T. Lee, Characteristics of microbial community and bio-hydrogen production from food waste, J. Korea Org. Resour. Recycl. Assoc., 20, 86-96 (2012).
9 N. B. D. Thi, G. Kumar, and C. Lin, An overview of food waste management in developing countries: Current status and future perspective, J. Environ. Manag., 157, 220-229 (2015).   DOI
10 S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, and B. Vaseeharan, Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae, Spectrochim. Acta, A, 137, 886-891 (2015).   DOI
11 C. G. Otoni, P. J. P. Espitia, R. J. Avena-Bustillos, and T. H. McHugh, Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads, Food Res. Int., 83, 60-73 (2016).   DOI
12 S. Jung, D. Kim, and J. Seo, Properties of LDPE composite films using polyurushiol (YPUOH) for functional packaging applications, Appl. Chem. Eng., 26, 23-28 (2015).   DOI
13 M. Ramos, A. Jimenez, M. Peltzer, and M. Garrios, Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging, J. Food Eng., 109, 513-519 (2012).   DOI
14 G. Jeon, S. Park, J. Seo, K. Seo, H. Han, and Y. C. You, Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films, Appl. Chem. Eng., 22, 610-616 (2011).
15 S. Park, B. Kim, and J. M. Rhee, Antibacterial activity of activated carbon fibers containing copper metal, Polymers, 27, 235-241 (2003).
16 R. Dastjerdi and M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties, Colloids Surf. B, 79, 5-18 (2010).   DOI
17 L. Karimi, S. Zohoori, and A. Amini, Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking, New Carbon Mater., 29, 380-385 (2015).
18 H. Shi, H. Liu, S. Luan, D. Shi, S. Yan, C. Liu, R. K. Y. Li, and J. Yin, Antibacterial and biocompatible properties of polyurethane nanofiber composites with integrated antifouling and bactericidal components, Compos. Sci. Technol., 127, 28-35 (2016).   DOI
19 Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications, Water Res., 42, 4591-4602 (2008).   DOI
20 X. Liu, M. Wang, S. Zhang, and B. Pan, Application potential of carbon nanotubes in water treatment: A review, J. Environ. Sci., 25, 1263-1280 (2013).   DOI
21 S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, and B. Vaseeharan, Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae, Spectrochim. Acta, A, 137, 886-891 (2015).   DOI