• 제목/요약/키워드: Spectroscopic factors

검색결과 45건 처리시간 0.029초

Uncertainty Quantification of the Experimental Spectroscopic Factor from Transfer Reaction Models

  • Song, Young-Ho;Kim, Youngman
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1247-1254
    • /
    • 2018
  • We study the uncertainty stemming from different theoretical models in the spectroscopic factors extracted from experiments. We use three theoretical approaches, the distorted wave Born approximation (DWBA), the adiabatic distorted wave approximation (ADWA) and the continuum discretized coupled-channels method (CDCC), and analyze the $^{12}C(d,p)^{13}C$, $^{14}C(d,p)^{15}C$ reactions. We find that the uncertainty associated with the adopted theoretical models is less than 20%. We also investigate the contribution from the remnant term and observe that it gives less than 10% uncertainty. We finally make an attempt to explain the discrepancy in the spectroscopic factors of $^{17}C(\frac{3}{2}^+)$ between the ones extracted from experiments and from shell model calculations by analyzing the $^{16}C(d,p)^{17}C$ reaction.

Review of Rice Quality under Various Growth and Storage Conditions and its Evaluation using Spectroscopic Technology

  • Joshi, Ritu;Mo, Changyeun;Lee, Wang-Hee;Lee, Seung Hyun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제40권2호
    • /
    • pp.124-136
    • /
    • 2015
  • Purpose: Grain quality is a general concept that covers many characteristics, ranging from physical to biochemical and physiochemical properties. Rice aging during storage is currently a challenge in the rice industry, and is a complicated process involving changes in all of the above properties. Spectroscopic techniques can be used to obtain information on the quality of rice samples in a non-destructive manner. Methods: The objective of this review was to highlight the factors that contribute to rice quality and aging, and to describe various spectroscopic modalities, particularly vibrational and hyperspectral imaging, for the assessment of rice quality. Results: Starch and protein are the main components of the rice endosperm, and are therefore key factors contributing to eating and cooking quality. While the overall starch, protein, and lipid content in the rice grain remains essentially unchanged during storage, structural changes do occur. These changes affect pasting and gel properties, and ultimately the flavor of cooked rice. In addition, grain quality is significantly affected by growing and environmental conditions, such as water availability, temperature, fertilizer application, and salinity stress. These properties can be evaluated using spectroscopic techniques, and rice samples can be discriminated by using multivariate statistical analysis methods. Conclusion: Hyperspectral imaging and vibrational spectroscopy techniques have good potential for determining rice quality properties in a non-invasive manner, i.e., not requiring the introduction of instruments into the rice grain.

Ab initio MRCI+Q Investigations of Spectroscopic Properties of Several Low-lying Electronic States of S2+ Cation

  • Li, Rui;Zhai, Zhen;Zhang, Xiaomei;Liu, Tao;Jin, Mingxing;Xu, Haifeng;Yan, Bing
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1397-1402
    • /
    • 2014
  • The complete active space self-consist field method followed by the internally contracted multireference configuration interaction method has been used to compute the potential energy curves of $X^2\prod_g$, $a^4\prod_u$, $A^2\prod_u$, $b^4\sum_{g}^{-}$, and $B^2\sum_{g}^{-}$ states of $S{_2}^+$ cation with large correlation-consistent basis sets. Utilizing the potential energy curves computed with different basis sets, the spectroscopic parameters of these states were evaluated. Finally, the transition dipole moment and the Franck-Condon factors of the transition from $A^2\prod_u$ to $X^2\prod_g$ were evaluated. The radiative lifetime of $A^2\prod_u$ is calculated to be 887 ns, which is in good agreement with experimental value of $805{\pm}10$ ns.

대두의 광학적 선별장치 개발을 위한 선별 인자 구명 (Identification of Discrimination Factors for Development of Optical Soybean Sorter)

  • 노상하;김현룡;황인근
    • Journal of Biosystems Engineering
    • /
    • 제23권4호
    • /
    • pp.343-350
    • /
    • 1998
  • Spectroscopic analysis of soybean kernels were made in the wavelength range of 400 to 1100 nm to find effective discrimination factors which are required for developing an opitical soybean sorter. Soybean samples used for the test were the sound and five classes of the defective kernels such as the immature, discolored(brown and violet), damaged by insect and diseased. Effective discrimination factors to classify the soybean kernels into the sound and the defective were found to be $R_{640}$, $R_{580}$/ $R_{990}$, $R_{600}$- $R_{820}$ and ( $R_{590}$- $R_{820}$)/ $R_{990}$. with classification error of less than 4%. Mahalanobis distance was used as a criterion to select significant wavelengths involved in the discrimination factors.s.

  • PDF

Spectroscopic Properties of Quercetin in AOT Reverse Micelles

  • Park, Hyoung-Ryun;Im, Seo-Eun;Seo, Jung-Ja;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.828-832
    • /
    • 2014
  • The spectroscopic properties of quercetin (QCT) were studied in the AOT reverse micelle by fluorescence spectroscopy. Because the molecular structure of QCT is completely planar, excited state intramolecular proton transfer (ESIPT) occurs between the -OH at C(5) and carbonyl oxygen via intramolecular hydrogen bonding. This ESIPT happens at the $S_1$ state but not at the $S_2$ state. Because QCT is a good donor-acceptor-conjugated molecule at the excited state, this molecule can emit strong fluorescence but shows no $S_1{\rightarrow}S_o$ emission due to this ESIPT. Since the $S_2{\rightarrow}S_1$ internal conversion was very slow due to the small Franck-Condon factors, $S_2{\rightarrow}S_o$ fluorescence emission was observed. All of the experimental results indicated that the QCT resided at the bound water interface and that the position of solute did not change significantly in the micelle at various water concentrations.

SPECTROSCOPIC AND CHEMOMETRIC ANALYSIS OF SW-NIR SPECTRA OF SUGARS AND FRUITS

  • Golic, Mirta;Walsh, Kerry;Lawson, Peter
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1133-1133
    • /
    • 2001
  • Fruit sweetness, as indexed by total soluble solids (TSS), and fruit acidity are key factors in the description of the fruit eating quality. Our group has been using short wave NIR spectroscopy (SW-NIR; 700-1100 nm) in combination with chemometric methods (PLS and MLR) for the non-invasive determination of the fruit eating quality (1,2). In order to further improve calibration performance, we have investigated SW-NIR spectra of sucrose and D-glucose. In previous reports on the band assignment for these sugars in the 1100-2500 nm spectral region (3-7), it has been established that change in concentration, temperature and physical state of sugars reflects on the shape and position of the spectral bands in the whole NIR region(5-7). The effect of change in concentration and temperature of individual sugar solutions and sugar spiked Juice samples was analysed using combined spectroscopic (derivative, difference, 2D spectroscopy) and linear regression chemometric (PLS, MLR) techniques. The results have been compared with the spectral data of a range of fruit types, varying in TSS content and temperature. In the 800-950 nm spectral region, the B-coefficients for apples, peaches and nectarines resemble those generated in a calibration of pure sucrose in water (Fig. 1). As expected, these fruits exhibit better calibration and prediction results than those in which the B-coefficients were poorly related to those for sugar.(Figure omitted).

  • PDF

Structural Studies on RUNX of Caenorhabditis elegans by Spectroscopic Methods

  • Son, Woo-Sung;Kim, Jong-Wan;Ahn, Hee-Chul;Park, Sung-Jean;Bae, Suk-Chul;Lee, Bong-Jin
    • 한국자기공명학회논문지
    • /
    • 제6권1호
    • /
    • pp.54-68
    • /
    • 2002
  • PEBP2/CBF (Polyomavirus Enhancer-core Binding Protein 2/Core Binding Factor), represents a new family of heterodimeric transcription factor. Those members play important roles in hematopoiesis and osteogenesis in mouse and human. PEBP2/CBF is a sequence-specific DNA binding protein. Each member of the PEBP2/CBF family of transcription factors is composed of two subunits, ${\alpha}$ and ${\beta}$. The evolutionarily conserved 128 amino acid region in ${\alpha}$ subunit has been called the Runt domain, which harbors two different activities, the ability to bind DNA and interact with the ${\beta}$ subunit. Recently, cDNA clones encoding the C. elegans Runt domain were isolated by screening a cDNA library. This gene was referred to run (Runt homologous gene). In this study, the basic experiments for the structural characterization of RUN protein were performed using spectroscopic methods. We have identified the structural properties of RUN using bioinformatics, CD and NMR. The limit temperature of the structural stability was up to 60$^{\circ}C$ with irreversible thermal process, and the structure of RUN seems to adopt ${\alpha}$ helices and one or more ${\beta}$ sheet or turn. The degree of NMR peak dispersion and intensity was increased by addition of glycine. Therefore, glycine could be used to alleviate the aggregation property of RUN in NMR experiment.

  • PDF

청자 유약 발색메카니즘에 대한 뫼스바우어 분광법에 의한 연구 (Mössbauer Spectroscopic Study on Colorative Mechanism of Celadon Glaze)

  • 김종영;노형구;전아영;김응수;조우석;김경자;김진모;김철성
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.34-39
    • /
    • 2011
  • Systematic study on relationship between celadon coloring and glaze component was conducted by chromaticity analysis and M$\ddot{o}$ssbauer spectroscopic analysis. The chromaticity ($L^*$, $a^*$, $b^*$ values) and M$\ddot{o}$ssbauer analysis results were correlated to the amount of $Fe_2O_3$, $TiO_2$, MnO, and $P_2O_5$, which are the essential factors influencing celadon coloring. According to chromaticity analysis, celadon glaze color belongs to GY group when the addition of $TiO_2$ was 1.4%, whereas the color belongs to BG group when the addition of $TiO_2$ was 0.1%. For the GY group, the colors change from GY to YR with the decrease of brightness as the addition of $TiO_2$, MnO, and $P_2O_5$ increases. According to M$\ddot{o}$ssbauer analysis results, as the amount of divalent iron ion increases, the $a^*$ and $b^*$ values decrease, on the other hand, $L^*$ value increases. The ratio of divalent iron ion produced in reductive sintering process is found to be 80~95% in this study, which induces the increase of $L^*$ values in celadon glaze.

마이크로 라만을 사용한 실리콘 아크릴레이트가 광중합 반응에 미치는 영향 관찰 (Observation of the silicon acrylate effect on the photo-polymerization reaction using micro raman spectroscopic technique)

  • 오향림;홍진후;유정아
    • 분석과학
    • /
    • 제17권3호
    • /
    • pp.225-229
    • /
    • 2004
  • UV 경화반응에 의하여 형성된 코팅의 성질을 향상시키기 위하여 첨가제로 사용한 실리콘 아크릴레이트가 광중합 반응에 미치는 영향을 마이크로 라만 분광법을 사용하여 관찰하였다. 광중합 반응의 반응체는 아크릴계 올리고머와 모노머를 사용하였으며 광 개시제로는 Darocur 1173을 사용하였다. 첨가제 실리콘 아크릴레이트는 광 경화 수지에 각각 0-3 wt% 첨가하였으며, UV를 조사하여 중합 반응시킨 후 공기-박막 경계면으로부터 두께에 따른 라만 스펙트럼을 관찰하였다. 광중합 반응의 진행정도는 1410과 $1635cm^{-1}$에 나타나는 중합에 직접 관여하는 아크릴기 ($-C=CH_2$)와 관련된 띠의 세기로부터 구하였다. 관찰된 결과에 따르면 마이크로라만으로부터 얻은 심도 스펙트럼 (depth profile)은 두께에 따른 경화반응의 진행 정도를 관찰할 수 있을 뿐만 아니라 경화 반응에 미치는 여러 요인에 대한 이해를 돕는 좋은 방법이 될 수 있음을 알 수 있다.

Investigation of the Corrosive Chemical Interaction on Antireflective Layers of Solar Cell Multilayers

  • 최성현;김선미;진숙영;박정영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.187-187
    • /
    • 2011
  • Nowadays, the issue of solar cell durability in local weather and environment is a crucial issue. Above all, surface corrosion on solar cell multilayers is a major factor that determines the durability of commercial solar cells; corrosive chemical interactions between air, humidity and chemical species and solar cell multilayers can unfavorably affect the durability. Here, we study microscopic and spectroscopic surface techniques to investigate the corrosive interaction on the antireflective layers of solar cell multilayers under various conditions such as acid, base, constant temperature and humidity. Surface morphology and adhesion force were characterized with atomic force microscopy before and after chemical treatment. Chemical composition, and transmittance factors were studied with X-ray photoelectron spectroscopy, and ultraviolet-visible spectroscopy, respectively. Based on these studies, we suggest the dominant factors in the corrosive chemical processes, and their influences on the structural, compositional, and optical properties of the antireflective layers.

  • PDF