DOI QR코드

DOI QR Code

Uncertainty Quantification of the Experimental Spectroscopic Factor from Transfer Reaction Models

  • Song, Young-Ho (Rare Isotope Science Project, Institute for Basic Science) ;
  • Kim, Youngman (Rare Isotope Science Project, Institute for Basic Science)
  • Received : 2018.04.19
  • Accepted : 2018.06.19
  • Published : 2018.11.15

Abstract

We study the uncertainty stemming from different theoretical models in the spectroscopic factors extracted from experiments. We use three theoretical approaches, the distorted wave Born approximation (DWBA), the adiabatic distorted wave approximation (ADWA) and the continuum discretized coupled-channels method (CDCC), and analyze the $^{12}C(d,p)^{13}C$, $^{14}C(d,p)^{15}C$ reactions. We find that the uncertainty associated with the adopted theoretical models is less than 20%. We also investigate the contribution from the remnant term and observe that it gives less than 10% uncertainty. We finally make an attempt to explain the discrepancy in the spectroscopic factors of $^{17}C(\frac{3}{2}^+)$ between the ones extracted from experiments and from shell model calculations by analyzing the $^{16}C(d,p)^{17}C$ reaction.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. M. Terasawa, K. Sumiyoshi, T. Kajino, G. J. Mathews and I. Tanihata, Astrophys. J. 562, 470 (2001). https://doi.org/10.1086/323526
  2. T. Sasaqui, T. Kajino, G. J. Mathews, K. Otsuki and K. Nakamura, Astrophys. J. 634, 1173 (2005). https://doi.org/10.1086/497061
  3. C. A. Bertulani, Shubhchintak, A. Mukhamedzhanov, A. S. Kadyrov, A. Kruppa and D. Y. Pang, J. Phys. Conf. Ser 703, 012007 (2016). https://doi.org/10.1088/1742-6596/703/1/012007
  4. R. E. Tribble, C. A. Bertulani, M. La Cognata, A. M. Mukhamedzhanov and C. Spitaleri, Rept. Prog. Phys. 77, 106901 (2014). https://doi.org/10.1088/0034-4885/77/10/106901
  5. C. A. Bertulani and A. Gade, Phys. Rept. 485, 195 (2010). https://doi.org/10.1016/j.physrep.2009.09.002
  6. I. J. Thompson and F. M. Nunes, Nuclear Reactions for Astrophysics (Cambridge University Press, Cambridge, 2009).
  7. W. N. Catford, Lect. Notes Phys. 879, 67 (2014).
  8. X. D. Liu, M. A. Famiano, W. G. Lynch, M. B. Tsang and J. A. Tostevin, Phys. Rev. C 69, 064313 (2004). https://doi.org/10.1103/PhysRevC.69.064313
  9. J. Lee, M. B. Tsang and W. G. Lynch, Phys. Rev. C 75, 064320 (2007). https://doi.org/10.1103/PhysRevC.75.064320
  10. V. Maddalena et al., Phys. Rev. C 63, 024613 (2001). https://doi.org/10.1103/PhysRevC.63.024613
  11. R. C. Johnson and P. J. R. Soper, Phys. Rev. C 1, 976 (1970). https://doi.org/10.1103/PhysRevC.1.976
  12. R. C. Johnson and P. C. Tandy, Nucl. Phys. A 235, 56 (1974). https://doi.org/10.1016/0375-9474(74)90178-X
  13. J. Tostevin, http://www.nucleartheory.net/NPG/code.htm, University of Surrey version of code TWOFNR (of M. Toyama, M. Igarashi and N. Kishida) and code FRONT.
  14. I. J. Thompson, Comput. Phys. Rept. 7, 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-6
  15. M. Yahiro, Y. Iseri, M. Kamimura and M. Nakano, Phys. Lett. B 141, 19 (1984). https://doi.org/10.1016/0370-2693(84)90549-5
  16. M. Yahiro, M. Nakano, Y. Iseri and M. Kamimura, Prog. Theor. Phys. 67, 1467 (1982). https://doi.org/10.1143/PTP.67.1467
  17. N. Keeley, N. Alamanos and V. Lapoux, Phys. Rev. C 69, 064604 (2004). https://doi.org/10.1103/PhysRevC.69.064604
  18. W. W. Daehnick, J. D. Childs and Z. Vrcelj, Phys. Rev. C 21, 2253 (1980). https://doi.org/10.1103/PhysRevC.21.2253
  19. A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0
  20. A. Gallman, P. Fintz and P. Hodgson, Nucl. Phys. 82, 161 (1966). https://doi.org/10.1016/0029-5582(66)90529-3
  21. T. W. Bonner, J. T. Eisinger, A. A. Kraus and J. B. Marion, Phys. Rev. 101, 209 (1956). https://doi.org/10.1103/PhysRev.101.209
  22. N. I. Zaika et al., Sov. Phys. JETP 12, 1 (1961).
  23. D. Robson, Nucl. Phys. 22, 34 (1961). https://doi.org/10.1016/0029-5582(61)90360-1
  24. E. W. Hamburger, Phys. Rev. 123, 619 (1961). https://doi.org/10.1103/PhysRev.123.619
  25. Z. H. Liu et al., Phys. Rev. C 64, 034312 (2001). https://doi.org/10.1103/PhysRevC.64.034312
  26. J. P. Schiffer, G. C. Morrison, R. H. Siemssen and B. Zeidman, Phys. Rev. 164, 1274 (1967). https://doi.org/10.1103/PhysRev.164.1274
  27. J. N. McGruer, E. K.Warburton and R. S. Bender, Phys. Rev. 100, 235 (1955). https://doi.org/10.1103/PhysRev.100.235
  28. S. Darden, S. Sen, H. Hiddleston, J. Aymar and W. Yoh, Nuclear Physics A 208, 77 (1973). https://doi.org/10.1016/0375-9474(73)90736-7
  29. S. Morita, N. Kawai, N. Takano, Y. Got, R. Hanada, Y. Nakajima, S. Takemoto and Y. Yaegashi, J. Phys. Soc. Jpn 15, 550 (1960). https://doi.org/10.1143/JPSJ.15.550
  30. R. van Dantzig and W. Tobocman, Phys. Rev. 136, B1682 (1964). https://doi.org/10.1103/PhysRev.136.B1682
  31. H. Ohnuma et al., Nucl. Phys. A 448, 205 (1986). https://doi.org/10.1016/0375-9474(86)90087-4
  32. X. D. Liu, Ph.D. thesis, Michigan State University, 2005.
  33. K. Hatanaka, N. Matsuoka, T. Saito, K. Hosono, M. Kondo, S. Kato, T. Higo, S. Matsuki, Y. Kadota and K. Ogino, Nucl. Phys. A 419, 530 (1984). https://doi.org/10.1016/0375-9474(84)90631-6
  34. S. Cohen and D. Kurath, Nucl. Phys. A 101, 1 (1967). https://doi.org/10.1016/0375-9474(67)90285-0
  35. R. A. Malaney and W. A. Fowler, Annals Phys. 192, 45 (1989), [Astrophys. J.333,14(1988)].
  36. J. B. Nelson and W. R. Smith, Nucl. Phys. A 96, 671 (1967). https://doi.org/10.1016/0375-9474(67)90613-6
  37. J. D. Goss, P. L. Jolivette, C. P. Browne, S. E. Darden, H. R. Weller and R. A. Blue, Phys. Rev. C 12, 1730 (1975). https://doi.org/10.1103/PhysRevC.12.1730
  38. G. Murillo, S. Sen and S. E. Darden, Nucl. Phys. A 579, 125 (1994). https://doi.org/10.1016/0375-9474(94)90797-8
  39. A. M. Mukhamedzhanov et al., Phys. Rev. C 84, 024616 (2011). https://doi.org/10.1103/PhysRevC.84.024616
  40. D. Y. Pang and A. M. Mukhamedzhanov, Phys. Rev. C 90, 044611 (2014). https://doi.org/10.1103/PhysRevC.90.044611
  41. D. Y. Pang, F. M. Nunes and A. M. Mukhamedzhanov, Phys. Rev. C 75, 024601 (2007). https://doi.org/10.1103/PhysRevC.75.024601
  42. T. Nakamura et al., Phys. Rev. C 79, 035805 (2009). https://doi.org/10.1103/PhysRevC.79.035805
  43. J. R. Terry, D. Bazin, B. A. Brown, J. Enders, T. Glasmacher, P. G. Hansen, B. M. Sherrill and J. A. Tostevin, Phys. Rev. C 69, 054306 (2004). https://doi.org/10.1103/PhysRevC.69.054306
  44. X. Pereira Lopez, Theses, Universite de Caen Normandie 2016, URL http://hal.in2p3.fr/tel-01522695.
  45. B. A. Brown and W. D. M. Rae, Nushell@msu code, MSU-NSCL report (2007).
  46. J. P. Ebran, E. Khan, D. P. Arteaga and D. Vretenar, Phys. Rev. C 83, 064323 (2011). https://doi.org/10.1103/PhysRevC.83.064323

Cited by

  1. Cluster transfer reactions with the combined R-matrix and Lagrange-mesh methods : A tribute to Mahir Hussein vol.57, pp.1, 2021, https://doi.org/10.1140/epja/s10050-021-00344-8