Browse > Article
http://dx.doi.org/10.3938/jkps.73.1247

Uncertainty Quantification of the Experimental Spectroscopic Factor from Transfer Reaction Models  

Song, Young-Ho (Rare Isotope Science Project, Institute for Basic Science)
Kim, Youngman (Rare Isotope Science Project, Institute for Basic Science)
Abstract
We study the uncertainty stemming from different theoretical models in the spectroscopic factors extracted from experiments. We use three theoretical approaches, the distorted wave Born approximation (DWBA), the adiabatic distorted wave approximation (ADWA) and the continuum discretized coupled-channels method (CDCC), and analyze the $^{12}C(d,p)^{13}C$, $^{14}C(d,p)^{15}C$ reactions. We find that the uncertainty associated with the adopted theoretical models is less than 20%. We also investigate the contribution from the remnant term and observe that it gives less than 10% uncertainty. We finally make an attempt to explain the discrepancy in the spectroscopic factors of $^{17}C(\frac{3}{2}^+)$ between the ones extracted from experiments and from shell model calculations by analyzing the $^{16}C(d,p)^{17}C$ reaction.
Keywords
Nuclear reaction models; Spectroscopic factors; Neutron transfer reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. E. Tribble, C. A. Bertulani, M. La Cognata, A. M. Mukhamedzhanov and C. Spitaleri, Rept. Prog. Phys. 77, 106901 (2014).   DOI
2 C. A. Bertulani and A. Gade, Phys. Rept. 485, 195 (2010).   DOI
3 I. J. Thompson and F. M. Nunes, Nuclear Reactions for Astrophysics (Cambridge University Press, Cambridge, 2009).
4 W. N. Catford, Lect. Notes Phys. 879, 67 (2014).
5 X. D. Liu, M. A. Famiano, W. G. Lynch, M. B. Tsang and J. A. Tostevin, Phys. Rev. C 69, 064313 (2004).   DOI
6 J. Lee, M. B. Tsang and W. G. Lynch, Phys. Rev. C 75, 064320 (2007).   DOI
7 V. Maddalena et al., Phys. Rev. C 63, 024613 (2001).   DOI
8 R. C. Johnson and P. J. R. Soper, Phys. Rev. C 1, 976 (1970).   DOI
9 R. C. Johnson and P. C. Tandy, Nucl. Phys. A 235, 56 (1974).   DOI
10 C. A. Bertulani, Shubhchintak, A. Mukhamedzhanov, A. S. Kadyrov, A. Kruppa and D. Y. Pang, J. Phys. Conf. Ser 703, 012007 (2016).   DOI
11 J. Tostevin, http://www.nucleartheory.net/NPG/code.htm, University of Surrey version of code TWOFNR (of M. Toyama, M. Igarashi and N. Kishida) and code FRONT.
12 I. J. Thompson, Comput. Phys. Rept. 7, 167 (1988).   DOI
13 M. Yahiro, Y. Iseri, M. Kamimura and M. Nakano, Phys. Lett. B 141, 19 (1984).   DOI
14 M. Yahiro, M. Nakano, Y. Iseri and M. Kamimura, Prog. Theor. Phys. 67, 1467 (1982).   DOI
15 N. Keeley, N. Alamanos and V. Lapoux, Phys. Rev. C 69, 064604 (2004).   DOI
16 W. W. Daehnick, J. D. Childs and Z. Vrcelj, Phys. Rev. C 21, 2253 (1980).   DOI
17 A. Gallman, P. Fintz and P. Hodgson, Nucl. Phys. 82, 161 (1966).   DOI
18 T. W. Bonner, J. T. Eisinger, A. A. Kraus and J. B. Marion, Phys. Rev. 101, 209 (1956).   DOI
19 N. I. Zaika et al., Sov. Phys. JETP 12, 1 (1961).
20 D. Robson, Nucl. Phys. 22, 34 (1961).   DOI
21 E. W. Hamburger, Phys. Rev. 123, 619 (1961).   DOI
22 Z. H. Liu et al., Phys. Rev. C 64, 034312 (2001).   DOI
23 A. M. Mukhamedzhanov et al., Phys. Rev. C 84, 024616 (2011).   DOI
24 J. B. Nelson and W. R. Smith, Nucl. Phys. A 96, 671 (1967).   DOI
25 J. D. Goss, P. L. Jolivette, C. P. Browne, S. E. Darden, H. R. Weller and R. A. Blue, Phys. Rev. C 12, 1730 (1975).   DOI
26 G. Murillo, S. Sen and S. E. Darden, Nucl. Phys. A 579, 125 (1994).   DOI
27 D. Y. Pang and A. M. Mukhamedzhanov, Phys. Rev. C 90, 044611 (2014).   DOI
28 D. Y. Pang, F. M. Nunes and A. M. Mukhamedzhanov, Phys. Rev. C 75, 024601 (2007).   DOI
29 T. Nakamura et al., Phys. Rev. C 79, 035805 (2009).   DOI
30 J. R. Terry, D. Bazin, B. A. Brown, J. Enders, T. Glasmacher, P. G. Hansen, B. M. Sherrill and J. A. Tostevin, Phys. Rev. C 69, 054306 (2004).   DOI
31 X. Pereira Lopez, Theses, Universite de Caen Normandie 2016, URL http://hal.in2p3.fr/tel-01522695.
32 B. A. Brown and W. D. M. Rae, Nushell@msu code, MSU-NSCL report (2007).
33 J. P. Ebran, E. Khan, D. P. Arteaga and D. Vretenar, Phys. Rev. C 83, 064323 (2011).   DOI
34 A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).   DOI
35 M. Terasawa, K. Sumiyoshi, T. Kajino, G. J. Mathews and I. Tanihata, Astrophys. J. 562, 470 (2001).   DOI
36 T. Sasaqui, T. Kajino, G. J. Mathews, K. Otsuki and K. Nakamura, Astrophys. J. 634, 1173 (2005).   DOI
37 J. P. Schiffer, G. C. Morrison, R. H. Siemssen and B. Zeidman, Phys. Rev. 164, 1274 (1967).   DOI
38 J. N. McGruer, E. K.Warburton and R. S. Bender, Phys. Rev. 100, 235 (1955).   DOI
39 S. Darden, S. Sen, H. Hiddleston, J. Aymar and W. Yoh, Nuclear Physics A 208, 77 (1973).   DOI
40 S. Morita, N. Kawai, N. Takano, Y. Got, R. Hanada, Y. Nakajima, S. Takemoto and Y. Yaegashi, J. Phys. Soc. Jpn 15, 550 (1960).   DOI
41 R. van Dantzig and W. Tobocman, Phys. Rev. 136, B1682 (1964).   DOI
42 H. Ohnuma et al., Nucl. Phys. A 448, 205 (1986).   DOI
43 X. D. Liu, Ph.D. thesis, Michigan State University, 2005.
44 K. Hatanaka, N. Matsuoka, T. Saito, K. Hosono, M. Kondo, S. Kato, T. Higo, S. Matsuki, Y. Kadota and K. Ogino, Nucl. Phys. A 419, 530 (1984).   DOI
45 S. Cohen and D. Kurath, Nucl. Phys. A 101, 1 (1967).   DOI
46 R. A. Malaney and W. A. Fowler, Annals Phys. 192, 45 (1989), [Astrophys. J.333,14(1988)].