• Title/Summary/Keyword: Spectral range

Search Result 948, Processing Time 0.023 seconds

Fine tuning of wavelength for the intenrnal wavelength locker module at 50 GHz composed of the photo-diode array black with the multi-channel tunable laser diodes in DWDM application (DWDM용 다채널 파장 가변 레이저 다이오드 모듈을 위한 다수개의 광 수신 소자를 갖는 50 GHz 내장형 파장 안정화 모듈의 파장 미세 조정)

  • 박흥우;윤호경;최병석;이종현;최광성;엄용성;문종태
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.384-389
    • /
    • 2002
  • A new idea of the wavelength locking module for DWDM application was investigated in the present research. Only one etalon photo-diode is generally used in the internal/external wavelength locking system. For the internal wavelength locking module with 50 GHz applications, an algle tuning method of the etalon commonly applied. However, the alignment process of the etalon with the angle tuning method is limited because the lock performance is extremely sensitive accoriding to the change of the tilting angle. In an optical viewpoint, the alignment tolerance of the locker module with the etalon PD array block was good, and the precise tuning of the wavelength was possible. The characteristics of free spectral range (FSR) and peak shift of wavelength according to the tilting angle with the locker module was investigated. For the present module, the optimized initial tilting angle was experimentally obtained.

2×2Ti:LiNbO3 Integrated Optical Add/Drop Multiplexers utilizing Strain-Optic Effect (스트레인광학효과를 이용한 2×2Ti:LiNbO3 삽입/분기 집적광학 멀티플렉서)

  • Jung, Hong-Sik;Choi, Yong-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.430-436
    • /
    • 2006
  • Polarization-independent $Ti:LiNbO_3\;2{\times}2$ optical add/drop multiplexer for the 1550nm wavelength region is fabricated. The device consists of two input waveguides, two polarization beam splitters. two polarization conversion/electrooptic tuning waveguide sections, and two output waveguides. The single mode channel waveguides for both TE and TM polarizations are fabricated on a x-cut $Ti:LiNbO_3$substrate by Ti diffusion. Spectral section is based on phase-matched polarization conversion due to shear strain induced by a thick $SiO_2$ grating overlay film. An applied voltage tunes the device by changing the waveguide birefringence, hence the optical wavelength at which most efficient polarization conversion occurs. Tuning rate of 0.094nm/V with a maximum range of 17nm has been obtained. The nearest side-lobe is about 8.2dB. The FWHM is 3.72nm.

Analysis on Design and Fabrication of High-diffraction-efficiency Multilayer Dielectric Gratings

  • Cho, Hyun-Ju;Lee, Kwang-Hyun;Kim, Sang-In;Lee, Jung-Hwan;Kim, Hyun-Tae;Kim, Won-Sik;Kim, Dong Hwan;Lee, Yong-Soo;Kim, Seoyoung;Kim, Tae Young;Hwangbo, Chang Kwon
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.125-133
    • /
    • 2018
  • We report an in-depth analysis of the design and fabrication of multilayer dielectric (MLD) diffraction gratings for spectral beam combining at a wavelength of 1055 nm. The design involves a near-Littrow grating and a modal analysis for high diffraction efficiency. A range of wavelengths, grating periods, and angles of incidence were examined for the near-Littrow grating, for the $0^{th}$ and $-1^{st}$ diffraction orders only. A modal method was then used to investigate the effect of the duty cycle on the effective indices of the grating modes, and the depth of the grating was determined for only the $-1^{st}$-order diffraction. The design parameters of the grating and the matching layer thickness between grating and MLD reflector were refined for high diffraction efficiency, using the finite-difference time-domain (FDTD) method. A high reflector was deposited by electron-beam evaporation, and a grating structure was fabricated by photolithography and reactive-ion etching. The diffraction efficiency and laser-induced damage threshold of the fabricated MLD diffraction gratings were measured, and the diffraction efficiency was compared with the design's value.

One Year of GOCI-II Launch Present and Future (GOCI-II 발사 1년, 현재와 미래)

  • Choi, Jong-kuk;Park, Myung-sook;Han, Kyung-soo;Kim, Hyun-cheol;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1229-1234
    • /
    • 2021
  • GOCI-II, which succeeded the mission of GOCI, was successfully launched in February 2020 and is in operation. GOCI-II is expected to be highly useful in a wide range of fields, including detailed changes in the coastal seawater environment using improved spatial and spectral resolution, increased number of observation and full disk observation mode. This special issue introduces the assessment of the current GOCI-II data quality and the studies on the accuracy improvement and applications at this time of one year after launch and data disclosure. We expect that this issue can be an opportunity for GOCI-II data to be actively utilized not only in the ocean but also in various fields of land and atmosphere.

A search-based high resolution frequency estimation providing improved convergence characteristics in power system (전력계통에서 수렴성 향상을 위한 탐색기반 고분해능 주파수 추정기법)

  • An, Gi-Sung;Seo, Young-Duk;Chang, Tae-Gyu;Kang, Sang-Hee
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.999-1005
    • /
    • 2018
  • This paper proposed a search-based high resolution frequency estimation method in power systme. The proposed frequency estimation method adopts a slope-based adaptive search as a base of adaptive estimation structure. The architectural and operational parameters in this adaptive algorithm are changed using the information from context layer analysis of the signals including a localized full-search of spectral peak. The convergence rate of the proposed algorithm becomes much faster than those of other conventional slope-based adaptive algorithms by effectively reducing search range with the application of the localized full-search of spectrum peak. The improvements in accuracy and convergence rate of the proposed algorithm are confirmed through the performance comparison with other representative frequency estimation methods, such as, DFT(discrete Fourier transform) method, ECKF(extended complex Kalman filter), and MV(minimum variable) method.

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments

  • Lewis-Lujan, Lidianys Maria;Rosas-Burgos, Ema Carina;Ezquerra-Brauer, Josafat Marina;Burboa-Zazueta, Maria Guadalupe;Assanga, Simon Bernard Iloki;del Castillo-Castro, Teresa;Penton, Giselle;Plascencia-Jatomea, Maribel
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.989-1002
    • /
    • 2022
  • Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.

α-Glucosidase Inhibitory Activity of Phenolic Compounds Isolated from the Stems of Caesalpinia decapetala var. japonica

  • Le, Thi Thanh;Ha, Manh Tuan;Hoang, Le Minh;Vu, Ngoc Khanh;Kim, Jeong Ah;Min, Byung Sun
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • In our study, sixteen known phenolic compounds, including quercetin (1), methyl gallate (2), caesalpiniaphenol C (3), 8S,8'S,7'R-(-)-lyoniresinol (4), 7,3',5'-trihydroxyflavanone (5), sappanchalcone (6), sappanone A (7), taxifolin (8), fisetin (9), fustin (10), (+)-catechin (11), brazilin (12), 3,4,5-trimethoxyphenyl β-ᴅ-glucopyranoside (13), 1-(2-methylbutyryl)phloroglucinol-glucopyranoside (14), (+)-epi-catechin (15), and astragalin (16) and one mixture of two conformers of protosappanin B (17/18) were isolated from the stems of Caesalpinia decapetala var. japonica. Their structures were elucidated based on a comparison of their physicochemical and spectral data with those of literature. To the best of our knowledge, this represents the first isolation of compounds 3, 4, 8, 9, and 10 from C. decapetala and compounds 13 and 14 from the Caesalpinia genus. All the isolated compounds were evaluated for their inhibitory effect against the α-glucosidase enzyme. Among them, two flavonols (1 and 9), one chalcone (6), and one homoisoflavanone (7) exhibited an inhibitory effect on α-glucosidase action with an IC50 range value of 5.08-15.01 μM, stronger than that of the positive control (acarbose, IC50 = 152.22 μM). Kinetic analysis revealed that compounds 1 and 9 showed non-competitive α-glucosidase inhibition, while the inhibition type was mixed for compounds 6 and 7.

Seismic loading response of piled systems on soft soils - Influence of the Rayleigh damping

  • Jimenez, Guillermo A. Lopez;Dias, Daniel;Jenck, Orianne
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-170
    • /
    • 2022
  • An accurate analysis of structures supported on soft soils and subjected to seismic loading requires the consideration of the soil-foundation-structure interaction. An important aspect of this interaction lies with the energy dissipation due to soil material damping. Unlike advanced constitutive models that can induce energy loss, the use of simple elastoplastic constitutive models requires additional damping. The frequency dependent Rayleigh damping is a formulation that is frequently used in dynamic analysis. The main concern of this formulation is the correct selection of the target damping ratio and the frequency range where the response is frequency independent. The objective of this study is to investigate the effects of the Rayleigh damping parameters in soil-pile-structure and soil-inclusion-platform-structure systems in the presence of soft soil under seismic loading. Three-dimensional analyses of both systems are carried out using the finite difference software Flac3D. Different values of target damping ratios and minimum frequencies are utilized. Several earthquakes are used to study the influence of different excitation frequencies in the systems. The soil response in terms of accelerations, displacements and strains is obtained. For the rigid elements, the results are presented in terms of bending moments and normal forces. The results show that when the frequency of the input motion is close to the minimum (central) frequency in the Rayleigh damping formulation, the overdamping amount is reduced, and the surface spectral acceleration of the analyzed pile and inclusion systems increases. Thus, the bending moments and normal forces throughout the piles and inclusions also increase.