• Title/Summary/Keyword: Spectral range

Search Result 948, Processing Time 0.028 seconds

Spectrum Sensing with Combining Spectral Correlation Density for ATSC Signal Detection (ATSC 신호 검출을 위한 스펙트럴 상관 밀도의 결합을 이용하는 스펙트럼 센싱)

  • Yoo, Do-Sik;Lim, Jongtae
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.298-305
    • /
    • 2013
  • In this paper, we propose simple combining schemes for sensing ATSC digital television signals with spectral correlation density (SCD). The detection algorithms exploiting the cyclostationarity exhibited by the pilot of ATSC digital television signals usually use the SCD value at a given particular frequency. However, we found that non-zero SCDs are found to be distributed over a certain range of frequencies in multipath fading environment. To utilize a set of non-zero SCD values computed in the vicinity of the pilot location, we formulate a class of combining methods in analogy with the maximal ratio combining, the square law combining and the equal gain combining. We show that the proposed simple combining schemes improve the detection performance by 0.5~1.0dB under multipath fading environments.

Coherent fiber-optic intrusion sensor for long perimeters monitoring

  • Choi Kyoo Nam
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.876-879
    • /
    • 2004
  • The buried fiber optic cable as a distributed intrusion sensor for detecting and locating intruders along the long perimeters is proposed. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from seismic disturbances in the vicinity are sensed by a phase-sensitive optical time-domain reflectometer. Light pulses from a Er:fiber cw laser with a narrow, <3kHz-range, spectral width and a frequency drift of < 1 MHz/min are injected into one end of the fiber, and the backscattered light from the fiber is monitored with a photodetector. Results of preliminary studies, measurement of phase changes produced by pressure and seismic disturbances in buried fiber optic cables and simulation of ${\varphi}-OTDR$ response over long fiber paths, to establish the feasibility of the concept are described. The field experiments indicate adequate phase changes, more than 1t-rad, are produced by intruders on foot and vehicle for burial depths in the 0.2 m to 1 m range in sand, clay and fine gravel soils. The simulations predict a range of 10 km with 35 m range resolution and 30 km with 90 m range resolution. This technology could in a cost-effective manner provide enhanced perimeter security.

  • PDF

Respiratory Sinus Arrhythmia: Methods of Measurement and Interpretations of Tonic and Dynamic Vagal Cardiac Drive Index in Psychophysiology of Emotions

  • Estate M.Sokhadze;Lee, Jong-Mi;Park, Mi-Kyung;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.81-87
    • /
    • 2000
  • Beat-to-beat changes in heart period (heart period variability, HPV) are mediated by fluctuations in autonomic activity. Spectral analysis is used to quantify such fluctuations in the range of 0.15-0.40 Hz (high frequency, HF), which are influenced primarily by parasympathetic factors. These fluctuations are often referred to as RSA (respiratory sinus arrhythmia), the physiological phenomenon extracted by spectral analysis and other methods including histograms of heart rate ( HR), deviations of HR etc. Respiratory sinus arrhythmia indexing with peak-to-valley method suggested by Grossman et at., (1981) yields a simple range statistic and is quantified on breath-by-breath basis, thus being quite sensitive and less dependent on recording time as compared to spectral analysis. It is strongly recommended to use at least 1 min epoch to asses HF component of HPV and at least 2 min fer low frequency (LF) of HPV and even 5 min far valid clinical assessment. Peak-to-valley statistic is limited to RSA index only, but has its pragmatic advantages. Most important is possibility of its application far relatively small epoch analysis. We used short periods (20,30, 40 sec only) and off-line analysis of RSA using ECG and respiration curve this method of assessment and proved that this method is more practically effective. The RSA index was not so far dependent on respiration pattern differences and reflected actual vagal control of HR and were accompanied by low HR under some high stress conditions and in an aversive affective visual stimulation experiments. Another factor that might modulate cardiac chronotropic response is the interaction of sympathetic and parasympathetic inputs on sino-atrial (SA) node level, because responses to vagal influences are known to be proportional to ongoing sympathetic activity, that is so called accentuated antagonism. Since sympathetic outflow (increment of influences on SA) under negative emotions or stress was high in almost all physiological responses, vagal effects on HR could be therefore potentiated, leading to masking of output cardiac response seen in HPV, In the case of moderate sympathetic activation, on the other hand, autonomic interactions in cardiac control appear to be minimal. Thus RSA index appears to be an effective alternative method to assess and measure spectral HPV.

  • PDF

Rayleigh-wave Phase Velocities and Spectral Amplitudes Affected by Insertion of an Anomalous Velocity Layer in the Overburden (천부 속도이상층이 레일리파 위상속도 및 수직변위 스펙트럼 진폭에 미치는 영향)

  • Kim, Ki Young;Jung, Jinhoon
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.155-162
    • /
    • 2012
  • The Thomsen-Haskell method was used to determine sensitivities of the Rayleigh-wave phase velocities and spectral amplitude of vertical ground motion to insertion of a single velocity-anomaly layer into overburden underlain by a basement. The reference model comprised a 9-m thick overburden with shear-wave velocity (${\nu}_s$ of 300 m/s above a half-space with ${\nu}_s$ = 1000 m/s. The inserted layer, with a velocity of 150, 225, 375, or 450 m/s and a thickness of 1, 2, or 3 m, was placed at depths increasing from the surface in increments of 1 m. Phase velocities were computed for frequencies of 4 to 30 Hz. For inserted layer models, we placed an anomalous layer with thickness of 1 ~ 3 m, shear-wave velocity of 150 ~ 450 m/s, and at depths of 0 ~ 8 m in the overburden. The frequency range of 8 ~ 20 Hz were the most sensitive to the difference of $C_R$ between the inserted and reference models (${\Delta}C_R$) for h = 1 m and the frequency range got wide as h increased. For all of the models, the spectral amplitudes of the fundamental mode exceeded those of the $1^{st}$-higher mode except at frequencies just above the low-frequency cutoff of the $1^{st}$-higher mode.

Utility of Separable Evaluation of the Vegetation Cover Rates and Vegetation Vigor Using Spectral Reflectance (분광반사 특성을 이용한 식생피복율과 활력도 분리평가의 효용성)

  • Choi, Seung-Pil;Park, Jong-Sun;Kim, Hyung-Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.393-399
    • /
    • 2005
  • Since vegetations are near the wavelength range in 700nm and have absorbent as well as reflective wavelength ranges, there is a much difference in terms of its reflection rate. There are currently many researches on vegetation index being conducted in order to apply the remote-sensing technology to vegetations rising their characteristics of absorbent and reflective wavelength ranges. Normalized Difference Vegetation Index (NDVI) and Perpendicular Vegetation Index (PVI) have been most commonly used. It is usually the evaporation, carbon-dioxide consumption, and chlorophyll density that represent the activity of vegetation, but chlorophyll density is the most commonly used among them. Since the red wavelength range used to obtain the NDVI and PVI has a strong extinction of chlorophyll, it is also useful to test chlorophyll density. The NDVI, in particular, is used to identify the vegetation conditions summarily, and thus, is suitable for initiative researches. Nevertheless, since these vegetation index produce mixed information of the Vegetation vigor and vegetation cover, it is essential to monitor a wavelength range that is independent from redundancy of the Vegetation vigor and vegetation cover. Although many vegetation indices have evaluated both the vegetation vigor and Vegetation cover simultaneously, this research intends to emphasize the utility of separable evaluations of the Vegetation vigor and Vegetation Cover rate through an experiment with grasses. As a result of evaluating vegetation index using spectral reflectance, a separable evaluation of the vegetation vigor and cover has been found more useful.

Assessment of Response Spectrum by Dynamic Centrifuge Test for the Pile Foundation into the Clay (동적 원심모형실험에 의한 점성토 지반에 근입된 말뚝지지 기초의 응답 스펙트럼 분석)

  • Kim, Sang-Yeon;Park, Jong-Bae;Park, Yong-Boo;Kim, Dong-Soo
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • Site coefficient and amplification factor of current domestic Seismic Design Code (KBC-2009) have no consideration for the domestic ground condition in which the base rock is normally placed within 30m form the surface. Accordingly, in this study dynamic centrifugal test and analysis for pile foundation into clay were achieved. and the response spectrums of free surface and basement were compared with each other. Within the period 1sec., the measured spectral acceleration of free surface and basement was bigger than the design spectral acceleration of SC and SD site. However the measured spectral acceleration of free surface and basement for the period over 1.5sec. was smaller than the design spectral acceleration of SC site. There was no severe difference of spectral acceleration according to the upper structure, embedded depth of foundation and free surface conditions. Consequently, normal domestic apartment housing for the period range over 1.5sec. could be design more economically applying these test result.

Monitoring Red Tide in South Sea of Korea (SSK) Using the Geostationary Ocean Color Imager (GOCI) (천리안 해색위성 GOCI를 이용한 대한민국 남해안 적조 모니터링)

  • Son, Young Baek;Kang, Yoon Hyang;Ryu, Joo Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.531-548
    • /
    • 2012
  • To identify Cochlodinium polykrikoides red tide from non-red tide water (satellite high chlorophyll waters) in the South Sea of Korea (SSK), we improved a spectral classification method proposed by Son et al.(2011) for the world first Geostationary Ocean Color Imager (GOCI). C. polykrikoides blooms and non-red tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 680 nm (fluorescence peak). The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio, respectively. After applying the red tide classification, the spectral response of C. polykrikoides red tide water, which is influenced by pigment concentration as well as CDOM (detritus), showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water. This modified spectral classification method for GOCI led to increase user accuracy for C. polykrikoides and non-red tide blooms and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, or proposed red tide detection algorithms. Maps of C. polykrikoides red tide in SSK outlined patches of red tide covering the area near Naro-do and Tongyeong during the end of July and early of August, 2012 and extending into from Wan-do and Geoje-do during the middle of August, 2012.

Characteristics of Ocean Scanning Multi-spectral Imager(OSMI) (Ocean Scanning Multi-spectral Imager (OSMI) 특성)

  • Young Min Cho;Sang-Soon Yong;Sun Hee Woo;Sang-Gyu Lee;Kyoung-Hwan Oh;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.223-231
    • /
    • 1998
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of less than 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-orbit image data storage. The instrument also performs sun calibration and dark calibration for on-orbit instalment calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a Charge Coupled Device (CCD) Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412, 443, 490, 510, 555, 670, 765 and 865 nm during ground characterization of instalment. In addition to the ground calibration, the on-orbit calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.

Synthesis and Absorption Spectral Properties of Bis-methine Dyes Exemplified by 2,5-Bis-arylidene-1-dicyanomethylene-cyclopentanes

  • Asiri, Abdullah Mohamed
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.426-430
    • /
    • 2003
  • A range of methine dyes has been synthesized by condensation of highly electronegative active methylene compound dicyanomethylenecyclopentane derived from cyclopentanone with the formyl group of substituted benzaldehydes. The electronic absorption spectroscopic properties of the dyes were investigated. In general, substituents on the aromatic aldehyde moiety have a significant effect on the visible absorption maxima of the dyes; increasing the solvent polarity also showed a pronounced effect on the absorption maxima.

A correlation study of substorm injections and ULF power with relativistic electron events

  • Jeong-A Hwang;Gyeong-Uk Min;Ji-Na Lee;Dae-Yeong Lee
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.88-88
    • /
    • 2004
  • We demonstrate that the flux levels of post-storm relativistic electrons are well correlated with the amount of electrons of the energy about 100 keV injected during substorms, while the power of ULF is more or less related to the spectral hardening of these seed electrons. Hence, the existence of ULF alone during the storm time does not necessarily cause flux increase of relativistic electrons as storms do not always generate sufficient amount of seed electrons of this energy range. (omitted)

  • PDF