DOI QR코드

DOI QR Code

Spectrum Sensing with Combining Spectral Correlation Density for ATSC Signal Detection

ATSC 신호 검출을 위한 스펙트럴 상관 밀도의 결합을 이용하는 스펙트럼 센싱

  • Yoo, Do-Sik (School of Electronic & Electrical Engineering of Hongik University) ;
  • Lim, Jongtae (School of Electronic & Electrical Engineering of Hongik University)
  • 유도식 (홍익대학교 전기전자공학부) ;
  • 임종태 (홍익대학교 전기전자공학부)
  • Received : 2013.05.07
  • Accepted : 2013.06.30
  • Published : 2013.06.30

Abstract

In this paper, we propose simple combining schemes for sensing ATSC digital television signals with spectral correlation density (SCD). The detection algorithms exploiting the cyclostationarity exhibited by the pilot of ATSC digital television signals usually use the SCD value at a given particular frequency. However, we found that non-zero SCDs are found to be distributed over a certain range of frequencies in multipath fading environment. To utilize a set of non-zero SCD values computed in the vicinity of the pilot location, we formulate a class of combining methods in analogy with the maximal ratio combining, the square law combining and the equal gain combining. We show that the proposed simple combining schemes improve the detection performance by 0.5~1.0dB under multipath fading environments.

본 논문에서는 스펙트럴 상관 밀도 (spectral correlation density, SCD)를 이용하여 ATSC 디지털 텔레비전 신호를 검출하기 위한 SCD 결합을 이용하는 스펙트럼 센싱 기법을 제시한다. ATSC 텔레비전 파일럿 신호의 사이클로스테이셔너리 성질을 이용하는 검출 기법은 주로 특정 위치의 주파수의 SCD 값을 이용한다. 하지만, 다중 경로 페이딩 환경에서 SCD의 값이 여러 주파수에 걸쳐서 분포되어 있음을 확인할 수 있다. 파일럿 근처에서 분포하는 일련의 SCD값을 이용하기 위해 최대율 결합 (maximal ratio combining), 자승 결합 (square law combining), 균일 이득 결합 (equal gain combining)과 유사한 SCD 결합 기법들을 제안한다. 제시한 SCD 결합 기법은 다중 페이딩 환경하에서 검출 성능을 0.5 ~ 1.0 dB 정도 향상시켰다.

Keywords

References

  1. J. Mitola III and G. Q. Maguire, "Cognitive Radio: Making Software Radios More Personal," IEEE Personal Communications, Vol. 6, No. 4, pp. 13-18, Aug. 1999. https://doi.org/10.1109/98.788210
  2. IEEE std. 802.22, "Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands," IEEE standard 802.22, July 2011.
  3. A. Ghasemi and E. Sousa, "Spectrum Sensing in Cognitive Radio Networks: Requirements, Challenges and Ddesign Trade-offs," IEEE Communications Magazine, Vol. 46, No. 4, pp. 32-39, Apr. 2008. https://doi.org/10.1109/MCOM.2008.4623702
  4. J. Ma, G. Li, and B. H. Juang, "Signal Processing in Cognitive Radio," Proceedings of the IEEE, Vol. 97, No. 5, pp. 805-823, May 2009. https://doi.org/10.1109/JPROC.2009.2015707
  5. T. Yucek and H. Arslan, "A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications," IEEE Communications Surveys and Tutorials, Vol. 11, No. 1, pp. 116-130, quarter 2009. https://doi.org/10.1109/SURV.2009.090109
  6. A. Shahi, N. Hoven, and R. Tandra, "Some Fundamental Limits on Cognitive Radio," in Proc. 42nd Annu. Allerton Conf. Communication, Control, and Comuting, Monticello, IL, pp. 1662-1671, Oct. 2004.
  7. H.-S. Chen, W. Gao, and D. Daut, "Spectrum Sensing Using Cyclostationary Properties and Applications to IEEE 802.22 WRAN," in Proc. IEEE Global Telecommunications Conference (GLOBECOM '07), pp. 3133-3138, Nov. 2007,
  8. ATSC std., "ATSC Recommended Practice: Receiver Performance Guidelines A/74," ATSC standard, Washington D.C., Jun. 2004.
  9. J. Proakis and M. Salehi, Digital Communications, 5th ed., McGraw-Hill, 2008.
  10. S. Mathur, R. Tandra, S. Shellhammer, and M. Ghosh, "Initial Signal Processing of Captured DTV Signals for Evaluation of Detection Algorithms," IEEE 802.22-06/0158r5, Sep. 2006.
  11. C. R. Stevensen, C. Cordeiro, E. Sofer, and G. Chouinard, "Functional Requirements for the 802.22 WRAN Standard," IEEE 802.22-05/0007r45, Sep. 2005.