DOI QR코드

DOI QR Code

Monitoring Red Tide in South Sea of Korea (SSK) Using the Geostationary Ocean Color Imager (GOCI)

천리안 해색위성 GOCI를 이용한 대한민국 남해안 적조 모니터링

  • 손영백 (한국해양과학기술원 해양위성센터) ;
  • 강윤향 ((주)해양기술ENG 부설연구소) ;
  • 유주형 (한국해양과학기술원 해양위성센터)
  • Received : 2012.08.13
  • Accepted : 2012.09.22
  • Published : 2012.10.31

Abstract

To identify Cochlodinium polykrikoides red tide from non-red tide water (satellite high chlorophyll waters) in the South Sea of Korea (SSK), we improved a spectral classification method proposed by Son et al.(2011) for the world first Geostationary Ocean Color Imager (GOCI). C. polykrikoides blooms and non-red tide waters were classified based on four different criteria. The first step revealed that the radiance peaks of potential red tide water occurred at 555 and 680 nm (fluorescence peak). The second step separated optically different waters that were influenced by relatively low and high contributions of colored dissolved organic matter (CDOM) (including detritus) to chlorophyll. The third and fourth steps discriminated red tide water from non-red tide water based on the blue-to-green ratio, respectively. After applying the red tide classification, the spectral response of C. polykrikoides red tide water, which is influenced by pigment concentration as well as CDOM (detritus), showed different slopes for the blue and green bands (lower slope at blue bands and higher slope at green bands). The opposite result was found for non-red tide water. This modified spectral classification method for GOCI led to increase user accuracy for C. polykrikoides and non-red tide blooms and provided a more reliable and robust identification of red tides over a wide range of oceanic environments than was possible using chlorophyll a concentration, or proposed red tide detection algorithms. Maps of C. polykrikoides red tide in SSK outlined patches of red tide covering the area near Naro-do and Tongyeong during the end of July and early of August, 2012 and extending into from Wan-do and Geoje-do during the middle of August, 2012.

남해안에서 발생한 Cochlodinium polykrikoides 적조를 적조인 경우와 아닌 경우(satellite high chlorophyll water)로 부터 분류하기 위해서, 본 연구는 Son et al.(2011)의 spectral classification 방법을 세계 최초 해색위성인 GOCI 파장에 맞도록 개선했다. C. polykrikoides 적조인 경우와 아닌 경우는 네 가지 단계를 거쳐서 분리했다. 첫 번째 단계는 적조 발생 가능지역으로 555nm와 680nm (fluorescence peak)에서 피크를 보이는 지역을 선택했다. 두 번째 단계는 적조 발생 가능 지역 중에서 용존유기물/부유물질 함량이 높은 지역과 낮은 지역을 구분했다. 세 번째와 네 번째 단계는 blue-to-green 밴드비를 이용하여 적조 발생 지역과 아닌 지역을 구분했다. 네 가지 단계를 적용한 결과 적조의 스펙트럼은 증가된 식물성 플랑크톤과 용존유기물(부유물질)의 흡광 때문에 짧은 파장에서는 낮은 기울기를 보이고, 증가된 부유물질 때문에 긴 파장에서는 상대적으로 증가된 기울기를 나타냈다. GOCI를 위해 개선된 spectral classification 방법은 C. polykrikoides 적조인 경우와 적조가 아닌 경우에 대해서 높은 user accuracy를 보이고, 다양한 해양환경에서 신뢰성 있는 적조 탐지 가능성을 보이고 클로로필 농도를 이용한 방법이나 기존의 다른 적조 탐지 방법보다 좋은 결과를 보였다. 남해안 C. polykrikoides 적조는 2012년 7월 말에서 8월 초까지 나로도와 통영 부근 해상에서 탐지 되었고, 2012년 8월 중순에는 완도에서 거제도까지 남해안 전체에 걸쳐 발생했다.

Keywords

References

  1. 손영백, 유주형, 노재훈, 주세종, 김상현, 2012. 남해와 동중국해에서 위성으로 추정된 표층수온 및 클로로필의 장기 변화, Ocean Polar Research, 34(2): 201-218. https://doi.org/10.4217/OPR.2012.34.2.201
  2. 손영백, 이태희, 최종림, 장성태, 김철호, 안유환, 유주형, 김문구, 정섬규, J. Ishizaka, 2010. 동중국해에서 위성에서 추정된 10년 동안의 표층 입자성 유기탄소의 시/공간적 변화, 대한원격탐사학회지, 26(4): 421-437. https://doi.org/10.7780/kjrs.2010.26.4.421
  3. 조성익, 안유환, 유주형, 강금실, 윤형식, 2010. 정지궤도 해색탑재체(GOCI)의 개발, 대한원격탐사학회지, 26(2): 157-165. https://doi.org/10.7780/kjrs.2010.26.2.157
  4. 한희정, 유주형, 안유환, 2010. 정지궤도 해색탑재체 (GOCI) 해양자료처리시스템(GDPS)의 개발, 대한원격탐사학회지, 26(2): 239-249. https://doi.org/10.7780/kjrs.2010.26.2.239
  5. Ahn, Y.H. and J.E. Moon, 1998. Specific absorption coefficients for chlorophyll and suspended sediment in the Yellow and Mediterranean Sea, Korean Journal of Remote Sensing, 14(4): 353-365. https://doi.org/10.7780/kjrs.1998.14.4.353
  6. Ahn, J.H., Y.J. Park, J.H. Ryu, B. Lee, and I.S. Oh, 2012. Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI), Ocean Science Journal, 47(3): 247-259. https://doi.org/10.1007/s12601-012-0026-2
  7. Ahn, Y.H. and P. Shanmugam, 2006. Detecting the red tide algal bloom from satellite ocean color observations in optically complex Northeast- Asia Coastal waters, Remote Sensing of Environment, 103: 419-437. https://doi.org/10.1016/j.rse.2006.04.007
  8. Ahn, Y.H,, P. Shanmugam, J.H. Ryu, and J.C. Jeong, 2006. Satellite detection of harmful algal bloom occurrences in Korean waters, Harmful Algae, 5: 213-231. https://doi.org/10.1016/j.hal.2005.07.007
  9. Babin, M., A. Morel, and B. Gentili, 1996. Remote sensing of sea surface sun-induced chlorophyll-a fluorescence: Consequences of natural variation in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence, International Journal of Remote Sensing, 17: 2417-2448. https://doi.org/10.1080/01431169608948781
  10. Cannizzaro, J.P., K.L. Carder,F.R. Chen, C.A. Heil, and G.A. Vargo, 2008. A novel technique for detection of the toxic dinoflagellate, K. brevis, in the Gulf of Mexico from remotely sensed ocean color data, Continental Shelf Research, 28: 137-158. https://doi.org/10.1016/j.csr.2004.04.007
  11. Carder, K.L., F.R. Chen, Z.P. Lee, S.K. Hawes, and D. Kamykowski, 1999. Semianalytic Moderate -Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with biooptical domains based on nitrate-depletion temperatures, Journal of Geophysical Research, 104: 5403-5421. https://doi.org/10.1029/1998JC900082
  12. Dierssen, H.M., R.M. Kudela, J.P. Ryan, and R.C. Zimmerman, 2006. Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments, Limnology and Oceanography, 51(6): 2646-2659. https://doi.org/10.4319/lo.2006.51.6.2646
  13. Hu, C., F.E. Muller-Karger, D.C. Biggs, K.L. Carder, B. Nababan, D. Dadeau, and J. Vanderbloemen, 2003. Comparison of ship and satellite biooptical measurements on the continental margin of the NE Gulf of Mexico, International Journal of Remote Sensing, 24(13): 2597-2612. https://doi.org/10.1080/0143116031000067007
  14. Hu, C., F.E. Muller-Karger, G.A. Vargo, M.B. Neely, and E. Johns, 2004. Linkages between coastal runoff and the Florida Keys ecosystem: A study of a dark plume event, Geophysical Research Letter, 31, doi:10.1029/2004GL020382.
  15. Hu, C., F.E. Muller-Karger, C. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, 2005. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters, Remote Sensing of Environment, 97: 311-321. https://doi.org/10.1016/j.rse.2005.05.013
  16. Ishizaka, J., Y. Kitaura, Y. Touke, H. Sasaki, A. Tanaka, H. Murakami, T. Suzuki, K. Matsuoka, and H. Nakata, 2006. Satellite detection of red tide in Ariake Sound, 1998- 2001, Journal of Oceanography, 62: 37-45. https://doi.org/10.1007/s10872-006-0030-1
  17. Kang, Y.S., H.G. Kim, W.E. Lim, and C.K. Lee, 2002. An unusual coastal environment and Cochlodinium polykrikoides blooms in 1995 in the South Sea of Korea, Journal of Korean Society Oceanography, 37(4): 1-12.
  18. Kim H.G., W.J. Choi, Y.G. Jung, P.S. Park, K.H. An, and C.I. Baek, 1999. Initiation of Cochlodinium polykrikoides blooms and its environmental characteristics around the Narodo Island in the western part of South Sea of Korea, Bulletin National Fishery and Research Development Institute, Republic of Korea, 57: 119-129.
  19. Kim, Y., Y. Byun, Y. Kim, and Y. Eo, 2009. Detection of Cochlodinium polykrikoides red tide based on two-stage filtering using MODIS data, Desalination, 249: 1171-1179. https://doi.org/10.1016/j.desal.2009.05.009
  20. Lee, D.K., 2008. Cochlodinium polykriklides blooms and eco-physical conditions in the South Sea of Korea, Harmful Algae, 7: 318-323. https://doi.org/10.1016/j.hal.2007.12.014
  21. Lee, S.G., H.G. Kim, H.M. Bae, Y.S. Kang, C.S. Jeong, C.K. Lee, S.Y. Kim, C.S. Kim, W.A. Lim, and U.S. Cho, 2002. Handbook of harmful marine algal blooms in Korean waters, National Fisheries Research and Development Institute, Republic of Korea, p. 172.
  22. Lee, Y.S., 2006. Factors affecting outbreaks of highdensity Cochlodinium polykrikoides red tides in the coastal seawaters around Yeosu and Tongyeong, Korea, Marine Pollution and Bulletin, 52: 1249-1259 https://doi.org/10.1016/j.marpolbul.2006.02.024
  23. Morel, A, 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case I water), Journal of Geophysical Research, 93: 10,749-10,768. https://doi.org/10.1029/JC093iC09p10749
  24. Morel, A. and S. Maritorena, 2001. Bio-optical properties of oceanic waters: A reappraisal, Journal of Geophysical Research, 106: 7163-7180. https://doi.org/10.1029/2000JC000319
  25. O'Reilly, J.E., S. Maritorena, D.A. Siegel, M.C. O'Brien, D. Toole, B.G. Mitchell, M. Kahru, F.P. Chavez, P. Strutton, G.F. Cota, S.B. Hooker, C.R. McClain, K.L. Carder, F. Muller- Karger, L. Harding, A. Magnuson, D. Phinney, G.F. Moore, J. Aiken, K.R. Arrigo, R. Letelier, and M.Culver, 2000. Ocean Color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: Version 4. in SeaWiFS Postlaunch Calibration and Validation Analysis, Part 3, SeaWiFS Postlaunch Tech. Rep. Ser., vol. 11, NASA/TM-2000-206892, edited by S. B. Hooker and E. R. Firestone, NASA, Greenbelt, MD, pp. 9-27.
  26. Ryu, J.-H., H.-J. Han, S. Cho, Y.-J. Park, and Y.-H. Ahn, 2012. Overview of Geostationary Ocean Color Imager (GOCI) and GOCI data Processing System (GDPS), Ocean Science Journal, 47(3): 223-233. https://doi.org/10.1007/s12601-012-0024-4
  27. Sasaki, H., A. Tanaka, M. Iwataki, Y. Touke, E. Siswanto, T.C. Knee, and J. Ishizaka, 2008. Optical Properties of Red Tide in Isahaya Bay, Southwestern Japan: Influence of Chlorophyll a Concentration, Journal of Oceanography, 64: 511-523. https://doi.org/10.1007/s10872-008-0043-z
  28. Schofield, O., J. Gryzmski, W.P. Bissett, G.J. Kirkpatrick, D.F. Millie, M. Moline, and C.S. Roesler, 1999. Optical monitoring and forecasting systems for harmful algal bloom: Possibility or pipe dream?, Journal of Phycology, 35: 1477-1496. https://doi.org/10.1046/j.1529-8817.1999.3561477.x
  29. Son, Y.B., J.-M. Min, and J.-H. Ryu, 2012. Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using Geostationary Ocean Color Imager (GOCI) data, Ocean Science Journal, 47(3): 359-375. https://doi.org/10.1007/s12601-012-0034-2
  30. Son, Y.B., J. Ishizaka, J.C. Jeong, H.C. Kim, and T. Lee, 2011. Cochlodinium polykrikoides red tide detection in the South Sea of Korea using spectral classification of MODIS data, Ocean Science Journal, 46(4): 239-263. https://doi.org/10.1007/s12601-011-0019-6
  31. Son, Y.B., W.D. Gardner, A.V. Mishonov, and M.J. Richardson, 2009. Multispectral remotesensing algorithms for particulate organic carbon (POC): The Gulf of Mexico, Remote Sensing of Environment, 113: 50-61. https://doi.org/10.1016/j.rse.2008.08.011
  32. Stumpf, R.P., M.E. Culver, P.A. Tester, M. Tomlinson, G.J. Kirkpatrick, B.A. Pederson, E. Truby, V. Ransibrahmanakuf, and M. Soracco, 2003. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data, Harmful Algae, 2: 147-160. https://doi.org/10.1016/S1568-9883(02)00083-5
  33. Suh, Y.S., L.H. Jang, N.K. Lee, and J. Ishizaka, 2004. Feasibility of red tide detection around Korea waters using satellite remote sensing, Journal of Fisher Science Technology, 7(3): 148-162.
  34. Tomlinson, M.C., R.P. Stumpf, V. Ransibrahmanakul, E.W. Turby, G.J. Kirkpatrick, B.A. Perderson, A.V. Gabriel, and C.A. Heil, 2004. Evaluation of the use of SeaWiFS imagery for detecting Karenia brevia harmful algal blooms in the eastern Gulf of Mexico, Remote Sensing of Environment, 91: 293-303. https://doi.org/10.1016/j.rse.2004.02.014
  35. Tomlinson, M.C., T.T. Wynne, and R.P. Stumpf, 2009. An evaluation of remote sensing techniques for enhanced detection of the toxic dinoflagellate, Karenia brevis, Remote Sensing Environment, 113: 589-609.
  36. Werdell, P.J. and S.W. Bailey, 2005. An improved insitu bio optical data set of ocean color algorithm development and satellite data product validation, Remote Sensing of Environment, 98: 122-140. https://doi.org/10.1016/j.rse.2005.07.001
  37. Wynne, T.T., R.P. Stumpf, M.C. Tomlinson, R.A. Warner, P.A. Tester, J. Dyble, and G.L. Fahnenstiel, 2008. Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lake, International Journal of Remote Sensing, 29: 3665-3672. https://doi.org/10.1080/01431160802007640

Cited by

  1. Analysis of Temporal and Spatial Red Tide Change in the South Sea of Korea Using the GOCI Images of COMS vol.22, pp.3, 2014, https://doi.org/10.7319/kogsis.2014.22.3.129
  2. Airborne Hyperspectral Imagery availability to estimate inland water quality parameter vol.30, pp.1, 2014, https://doi.org/10.7780/kjrs.2014.30.1.6
  3. Analysis of Red Tide Movement in the South Sea of Gyeongnam Province Using the GOCI Images of COMS vol.23, pp.1, 2015, https://doi.org/10.7319/kogsis.2015.23.1.065
  4. An Analysis of the Relationship between Inherent Optical Properties and Ocean Color Algorithms Around the Korean Waters vol.31, pp.5, 2015, https://doi.org/10.7780/kjrs.2015.31.5.11
  5. Detection technique of Red Tide Using GOCI Level 2 Data vol.32, pp.6, 2016, https://doi.org/10.7780/kjrs.2016.32.6.11
  6. Study on the temporal and spatial variation in cold water zone in the East Sea using satellite data vol.32, pp.6, 2016, https://doi.org/10.7780/kjrs.2016.32.6.14
  7. 천리안 GOCI영상을 이용한 남해안 적조우심해역 분석 vol.33, pp.5, 2012, https://doi.org/10.7848/ksgpc.2015.33.5.353
  8. Application study of red tide monitoring to desalination plants using chollian (COMS) vol.57, pp.55, 2012, https://doi.org/10.1080/19443994.2016.1190113
  9. 위성영상을 활용한 한국 남해의 광학적 특성 연구 : 2013년 8월 발생한 적조 사례를 중심으로 vol.11, pp.7, 2012, https://doi.org/10.13067/jkiecs.2016.11.7.723
  10. GOCI를 활용한 한반도 주변해역 적조 감시 체계 연구 vol.33, pp.2, 2017, https://doi.org/10.7780/kjrs.2017.33.2.9
  11. GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지 vol.34, pp.2, 2018, https://doi.org/10.7780/kjrs.2018.34.2.2.6
  12. 가시 밴드와 근적외 밴드를 이용한 해무 탐지 알고리즘 vol.13, pp.3, 2018, https://doi.org/10.13067/jkiecs.2018.13.3.669
  13. 극지 해양환경 관측 및 고위도 해색 검보정을 위한 초분광 HyperSAS 자료구축 vol.34, pp.6, 2012, https://doi.org/10.7780/kjrs.2018.34.6.2.5
  14. Synergistic Effect of Multi-Sensor Data on the Detection of Margalefidinium polykrikoides in the South Sea of Korea vol.11, pp.1, 2012, https://doi.org/10.3390/rs11010036
  15. Quantification of Margalefidinium polykrikoides Blooms along the South Coast of Korea Using Airborne Hyperspectral Imagery vol.12, pp.15, 2012, https://doi.org/10.3390/rs12152463
  16. 동해에서 식물플랑크톤 군집 분포 분석을 위한 GOCI 활용 연구 vol.36, pp.6, 2012, https://doi.org/10.7780/kjrs.2020.36.6.1.5