• 제목/요약/키워드: Spectral element method

검색결과 174건 처리시간 0.024초

스펙트럴 요소를 이용한 곡선 보 구조물의 동적거동 해석 (Study on the dynamic behaviors of curved beam structure using spectral element)

  • 이준근;이우식;박철희
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.83-88
    • /
    • 1996
  • The significance of spectral element method is that it can treat the mass and stiffness distribution exactly in contrast to the conventional finite element method, and therefore the dynamic behaviors within each spectral element can be obtained exactly. The present study provides the derivation of the spectral element of a curved beam, while the previous ones presented that of a straight structure. Further, in order to verify the derived spectral element, the natural frequencies of a ring by the spectral element method are compared with those by the analytical method and those by the FEM. From the verification, derived spectral element is admissible. And the dynamic behaviors of curved beam are simulated by using the derived spectral element of a curved beam.

  • PDF

대공간 구조 시스템의 동적 해석을 위한 스펙트럴 요소법의 적용성 평가 (The evaluation of applicability of spectral element method for the dynamic analysis of the spatial structures)

  • 한상을;이상주;조준영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.789-794
    • /
    • 2007
  • Recently, the necessity of efficient and exact method to analyze structures is increasing with the importance of the seismic analysis. But the finite element method used in many field do not give the exact solution unless the length of the element is very short enough to represent the deformation of the element. Because the amount of computer calculation increase with the increasing of the number of degree of freedoms, the finite element method for the exact dynamic analysis of structures would not be efficient. To solve these problems, spectral clement method combined spectral method using the principle of wave mechanics and finite element method for the analysis of discrete models is applied to evaluate the behavior of the spatial structures. As a result of analysis. it becomes clear that the spectral element method is faster and more exact than the finite clement method.

  • PDF

스펙트럴유한요소법을 이용한 네 변이 단순지지 된 직사각형평판의 진동해석 (Analysis of Simply Supported Rectangular Plate Using Spectral Finite Element Method)

  • 주경림;홍석윤;송지훈;김동진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.85-89
    • /
    • 2005
  • For the analysis of a vibrating two dimensional structure such as the simply supported rectangular plate, Spectral Finite Element Method (SFEM) has been studied. Under the condition that two parallel edges are simply supported at least and the other two edges can be arbitrary, Spectral Finite Element has been developed. Using this element SFEM is applied to the vibrating rectangular plate which all edges are simply supported, and obtain the frequency response function in frequency domain and the dynamic response in time domain. To evaluate these results normal mode method and finite element method (FEM) are also accomplished and compared. It is seen that SFEM is more powerful analysis tool than FEM in high frequency range.

  • PDF

일차원 혈류해석을 위한 스펙트럴 요소 모델링 (Spectral Element modeling for the one-dimensional blood flow analysis)

  • 장인준;이우식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.152-155
    • /
    • 2008
  • The blood flow characteristics have been closely related to various cardiovascular diseases, it is very important to predict them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral element model for the blood flow through blood vessels. The spectral element model is formulated by using the variational method. The nonlinear terms in spectral element model are all treated as the pseudo-force and an iterative solution method is applied in the frequency domain.

  • PDF

내부유동을 갖는 파이프 진동의 스펙트럴요소해석 (Spectral Element Vibration Analysis of the Pipeline Conveying Internal Flow)

  • 오혁진;강관호;이우식
    • 대한기계학회논문집A
    • /
    • 제27권2호
    • /
    • pp.294-301
    • /
    • 2003
  • It is of often important to accurately predict the flow-induced vibration or dynamic instability of a pipeline conveying internal high speed flow in advance, which requires a very accurate solution method. In this study, first the dynamic equations for the axial and transverse vibrations of a pipeline are reduced from a set of pipe-dynamic equations derived in the previous study and then the spectral element model is formulated. The accuracy of the spectral element method (SEM) is then verified by comparing its results with the results obtained by finite element method (FEM). It is shown that the present spectral element model provides very accurate solutions by using an extremely small number of degrees-of-freedom when compared with FEM. The dynamics of a sample pipeline is investigated with varying the axial tension and the speed of internal flow.

스펙트럴요소법을 이용한 내부 비정상류를 갖는 파이프에 대한 진동해석 (Vibration Analysis of the Pipeline with Internal Unsteady Fluid Flow by Using Spectral Element Method)

  • 서보성;조주용;이우식
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.387-393
    • /
    • 2006
  • 이 논문에서는 내부에 비정상 유동이 흐르는 균일한 직선 파이프에 대한 스펙트럴요소모델을 개발하였다. 개발된 스펙트럴요소모델에 대한 스펙트럴요소행렬은 주파수 영역에서 구한 파이프 역학 방정식의 엄밀해를 이용하여 유도되었다. 이 스펙트럴요소모델의 정확성을 평가하고 한 예제 파이프 계의 진동특성과 파이프 내부 유동특성을 고찰하기 위하여 스펙트럴 동역학 해석을 수행하였다.

스펙트럴요소법을 이용한 동적집중하중을 받는 평판의 진동해석 (Vibration analysis of the plates subject to dynamic concentrated loads by using spectral element method)

  • 이준근;이우식
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.635-643
    • /
    • 1998
  • A spectral element method(SEM) is introduced for the vibration analysis of a rectangular plate subject to dynamic concentrated loads. First, the spectral plate element is derived from the relations between the forces and displacements along the two opposite edges of plate element. The global spectral matrix equation is then formulated by assembling two spectral plate elements so that the dynamic concentrated load is located at the connection nodal line between two plate elements. the concentrated load is then spatially Fourier transformed in the direction of the connection nodal line to transform the two-dimensional plate problem into a simplified equivalent one-dimensional beam-like problem. We may benefit from these procedures in that the spectral results from the present SEM is compared with the exact analytical solutions to prove the remarkable accuracy of the present SEM, while this is not true for conventional finite element solutions, especially at high frequency.

NONCONFORMING SPECTRAL ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS

  • Kumar, N. Kishore
    • Journal of applied mathematics & informatics
    • /
    • 제32권5_6호
    • /
    • pp.761-781
    • /
    • 2014
  • An exponentially accurate nonconforming spectral element method for elasticity systems with discontinuities in the coefficients and the flux across the interface is proposed in this paper. The method is least-squares spectral element method. The jump in the flux across the interface is incorporated (in appropriate Sobolev norm) in the functional to be minimized. The interface is resolved exactly using blending elements. The solution is obtained by the preconditioned conjugate gradient method. The numerical solution for different examples with discontinuous coefficients and non-homogeneous jump in the flux across the interface are presented to show the efficiency of the proposed method.

A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis

  • Lee, Gil-Yong;Jin, Seung-Seop;Park, Yong-Hwa
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.311-325
    • /
    • 2020
  • In applying the spectral stochastic finite element methods to the frequency response analysis, the conventional methods are known to give unstable and inaccurate results near the natural frequencies. To address this issue, a new sensitivity based stabilized formulation for stochastic frequency response analysis is proposed in this paper. The main difference over the conventional spectral methods is that the polynomials of random variables are applied to both numerator and denominator in approximating the harmonic response solution. In order to reflect the resonance behavior of the structure, the denominator polynomials is constructed by utilizing the natural frequency sensitivity and the random mode superposition. The numerator is approximated by applying a polynomial chaos expansion, and its coefficients are obtained through the Galerkin or the spectral projection method. Through various numerical studies, it is seen that the proposed method improves accuracy, especially in the vicinities of structural natural frequencies compared to conventional spectral methods.

스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석 (Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method)

  • 이영구;홍석윤;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.