• Title/Summary/Keyword: Spectral Finite Element

Search Result 120, Processing Time 0.028 seconds

Analysis of Simply Supported Rectangular Plate Using Spectral Finite Element Method (스펙트럴유한요소법을 이용한 네 변이 단순지지 된 직사각형평판의 진동해석)

  • Jo, Kyung-Lim;Hong, Suk-Yoon;Song, Ji-Hun;Kim, Dong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.85-89
    • /
    • 2005
  • For the analysis of a vibrating two dimensional structure such as the simply supported rectangular plate, Spectral Finite Element Method (SFEM) has been studied. Under the condition that two parallel edges are simply supported at least and the other two edges can be arbitrary, Spectral Finite Element has been developed. Using this element SFEM is applied to the vibrating rectangular plate which all edges are simply supported, and obtain the frequency response function in frequency domain and the dynamic response in time domain. To evaluate these results normal mode method and finite element method (FEM) are also accomplished and compared. It is seen that SFEM is more powerful analysis tool than FEM in high frequency range.

  • PDF

The evaluation of applicability of spectral element method for the dynamic analysis of the spatial structures (대공간 구조 시스템의 동적 해석을 위한 스펙트럴 요소법의 적용성 평가)

  • Han, Sang-Eul;Lee, Sang-Ju;Cho, Jun-Yeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.789-794
    • /
    • 2007
  • Recently, the necessity of efficient and exact method to analyze structures is increasing with the importance of the seismic analysis. But the finite element method used in many field do not give the exact solution unless the length of the element is very short enough to represent the deformation of the element. Because the amount of computer calculation increase with the increasing of the number of degree of freedoms, the finite element method for the exact dynamic analysis of structures would not be efficient. To solve these problems, spectral clement method combined spectral method using the principle of wave mechanics and finite element method for the analysis of discrete models is applied to evaluate the behavior of the spatial structures. As a result of analysis. it becomes clear that the spectral element method is faster and more exact than the finite clement method.

  • PDF

Spectral Element Modeling for the Blood Flow through Artery (동맥 유동해석을 위한 스펙트럴 요소의 개발)

  • Jang, In-Joon;Seo, Bo-Sung;Lee, U-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.383-386
    • /
    • 2007
  • As the blood flow characteristics have been recognized to be closely related to various cardiovascular diseases, it is very important to predict them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral finite element model for the human blood vessels. The spectral finite element model is formulated in the frequency-domain by using the exact frequency dependent shape functions and applied to an ascending aorta.

  • PDF

Calculation of Cavity Flow with FEM & Finite Spectral Method

  • Wang Jian-Ping;Li Ting-Wen
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.131-133
    • /
    • 2003
  • The streamfunction-vorticity equations for two-dimentional cavity flow are solved by a new finite element method which uses finite spectral basis functions as interpolation functions for rectangular elements. Results for several cases with different Renold's number are compared with benchmark solutions and found to be in well agreement.

  • PDF

Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method (스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석)

  • Lee, Yung-Koo;Hong, Suk-Yoon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.

An Axially Moving Thermoelastic Beam-plate: Spectral Element Modeling and Analysis (이동하는 열탄성 보-평판의 진동에 대한 스펙트럴요소 해석)

  • Kwon Kyung-Soo;Cho Joo-Yong;Lee U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.344-349
    • /
    • 2005
  • The axially moving thin beam-plates exposed to sudden thermal loadings may experience severe vibrations through the thermal shock process. For accurate prediction of the thermal shock-induced vibrations, this paper develops a spectral element model for axially moving thermoelastic beam-plates. The spectral element model which is represented by spectral element matrix is formulated from the frequency-dependent dynamic shape functions which satisfy the governing equations in the frequency-domain. Thus, when compared with the classical finite element model in which simple polynomial functions are used as the shape functions, the spectral element model can provide exact solution by treating a whole uniform structure member as a single finite element, regardless of its length.

  • PDF

A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis

  • Lee, Gil-Yong;Jin, Seung-Seop;Park, Yong-Hwa
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.311-325
    • /
    • 2020
  • In applying the spectral stochastic finite element methods to the frequency response analysis, the conventional methods are known to give unstable and inaccurate results near the natural frequencies. To address this issue, a new sensitivity based stabilized formulation for stochastic frequency response analysis is proposed in this paper. The main difference over the conventional spectral methods is that the polynomials of random variables are applied to both numerator and denominator in approximating the harmonic response solution. In order to reflect the resonance behavior of the structure, the denominator polynomials is constructed by utilizing the natural frequency sensitivity and the random mode superposition. The numerator is approximated by applying a polynomial chaos expansion, and its coefficients are obtained through the Galerkin or the spectral projection method. Through various numerical studies, it is seen that the proposed method improves accuracy, especially in the vicinities of structural natural frequencies compared to conventional spectral methods.

Experimental Verification of Spectral Element Analysis for the High-frequency Dynamic Responses of a Beam with a Surface Bonded Piezoelectric Transducer (압전소자가 부착된 보의 고주파수 동적응답에 대한 스펙트럼 요소 해석의 실험적 검증)

  • Kim, Eun-Jin;Sohn, Hoon;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1347-1355
    • /
    • 2009
  • This paper demonstrates the validity of spectral element analysis for modeling the high-frequency dynamic behaviors of a beam with a surface-bonded piezoelectric wafer through a laboratory test. In the spectral element analysis, the high-frequency electro-mechanical interaction can be considered properly with relatively low computational cost compared to the finite element analysis. In the verification test, a cantilever beam with a surface-bonded piezoelectric wafer is forced to be in steady-state motion by exerting the harmonic driving voltage signal on the piezoelectric wafer. A laser scanning vibrometer is used to obtain the overall dynamic responses of the structure such as resonance frequencies, the associated mode shapes, and frequency response functions up to 20 kHz. Then, these dynamic responses from the test are compared to those computed by the spectral element analysis. A two-dimensional finite analysis is conducted to obtain the asymptotic solutions for the comparison purpose as well.

Study on the dynamic behaviors of curved beam structure using spectral element (스펙트럴 요소를 이용한 곡선 보 구조물의 동적거동 해석)

  • 이준근;이우식;박철희
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.83-88
    • /
    • 1996
  • The significance of spectral element method is that it can treat the mass and stiffness distribution exactly in contrast to the conventional finite element method, and therefore the dynamic behaviors within each spectral element can be obtained exactly. The present study provides the derivation of the spectral element of a curved beam, while the previous ones presented that of a straight structure. Further, in order to verify the derived spectral element, the natural frequencies of a ring by the spectral element method are compared with those by the analytical method and those by the FEM. From the verification, derived spectral element is admissible. And the dynamic behaviors of curved beam are simulated by using the derived spectral element of a curved beam.

  • PDF

Spectral Element Analysis of the Pipeline Conveying Internal Flow (스펙트럴요소법을 이용한 내부유동 포함된 파이프 진도해석)

  • 강관호;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.207-212
    • /
    • 2001
  • This paper considers a pipeline conveying one-dimensional unsteady flow inside. The dynamics of the fluid-pipe system is represented by two coupled equations of motion for the transverse and axial displacements, which are linearized from a set of partial differential equations which consists of the axial and transverse equations of motion of the pipeline and the equations of momentum and continuity of the internal flow. Because of the complex nature of fluid-pipe interactive mechanism, a very accurate solution method is required to get sufficiently accurate dynamic characteristics of the pipeline. In the literatures, the finite element models have been popularly used for the problems. However, it has been well recognized that finite element method (FEM) may provide poor solutions especially at high frequency. Thus, in this paper, a spectral element model is developed for the pipeline and its accuracy is evaluated by comparing with the solutions by FEM.

  • PDF