• 제목/요약/키워드: Specimen Testing

검색결과 1,053건 처리시간 0.026초

나노 인장시험을 위한 압축 시험기용 인장시편 제작에 관한 연구 (Fabrication of Nano-Size Specimens for Tensile Test Employing Nano-Indentation Device)

  • 임태우;양동열
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.911-916
    • /
    • 2015
  • In the nano/micro scale, material properties are dependent on the size-scale of a structure. However, conventional micro-scale tensile tests have limitations to obtain reliable values of nano-scale material properties owing to residual stress and elastic slippage in the gripping/aligning process. The indenter-driven nano-scale tensile test provides prominent advantages simple testing device, high-quality nano-scale metallic specimen with negligible residual stress. In this paper, two-types of specimens (a specimen with multi-testing parts and a specimen with a single-testing part) are discussed. Focused ion beam (FIB) is employed to fabricate a nano-scale specimen from a thin nickel film. Using the specimen with a single-testing part, we obtained a nano-scale stress-strain curve of electroplated nickel film.

시료크기 및 인장속도에 따른 지오그리드의 광폭인장강도 평가 (Wide-Width Tensile Strength Properties of Geogrids according to Specimen Length and Testing Speed)

  • 조삼덕;이광우;오세용
    • 한국지반신소재학회논문집
    • /
    • 제6권2호
    • /
    • pp.21-26
    • /
    • 2007
  • 지오그리드의 인장강도 특성은 시험온도, 시료길이, 변위측정방법, 인장속도 및 시험장치 등에 영향을 받는다. 지오그리드의 인장강도시험법은 ASTM 06637 및 ISO 10319에 규정되어 있다. 그러나 이 두 시험법은 인장속도 및 시료길이에서 다소간의 차이를 가진다. 본 연구에서는 국내에서 많이 사용되고 있는 세 가지 종류의 지오그리드를 대상으로 일련의 광폭인장강도시험을 수행하여 시료길이 및 인장속도가 지오그리드의 광폭인장강도에 미치는 영향을 평가하였다.

  • PDF

세라믹 박판의 접착 강도 측정 (Measurement of Adhesion Strength for Ceramic Sheet)

  • 허용학;김동일;김동진;이경호;김동진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1798-1802
    • /
    • 2007
  • Adhesion strength of single layer ceramic capacitor sheet was measured using a peel testing system developed in this study. The peel test specimens with various dimensions were prepared from the ceramic sheet cast on the PET film. In peel test, the sheet specimen was adhered on the glass jig floating on the liquid media, which was designed to minimize the friction, and the specimen was then pulled up by micro-actuator. During the separation of the sheet from the PET film, peel force was measured. To normalize the testing condition, 3 different widths of the specimen were selected: 5, 10 and 20 mm. was used Furthermore, testing speed effect was investigated in this study. From the resullts using various testing conditions, the standard method for the peel strength testing may be suggested. Based on the testing condition, effect of peel angle on the strength was experimentally examined. It was found that the adhesive strength for the ceramic sheet is nearly identical, irrespective of the specimen width ranged from 5 to 20 mm, while the adhesive strength was increased with increasing testing speed. Furthermore, the strength was shown to be dependent on the peel angle.

  • PDF

시편두께 및 균열깊이 영향을 고려한 비표준시편의 J 시험법 및 구속효과의 정량화 (Specimen Thickness and Crack Depth Effects on J Testing and Crack Tip Constraint for Non-standard Specimen)

  • 김진수;조수만;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1531-1538
    • /
    • 2003
  • This paper compiles solutions of plastic $\eta$ factors and crack tip stress triaxialites for standard and nonstandard fracture toughness testing specimens, via detailed three-dimensional (3-D) finite element (FE) analyses. Fracture toughness testing specimens include a middle cracked tension (M(T)) specimen, SE(B), single-edge cracked bar in tension (SE(T)) and C(T) specimen. The ligament-to-thickness ratio of the specimen is systematically varied. It is found that the use of the CMOD overall provides more robust experimental J estimation than that of the LLD, for all cases considered in the present work. Moreover, the J estimation based on the load-CMOD record is shown to be insensitive to the specimen thickness, and thus can be used for testing specimen with any thickness. The effects of in-plane and out-of-plane constraint on the crack tip stress triaxiality are also quantified, so that when experimental J value is estimated according to the procedure recommended in this paper, the corresponding crack tip stress triaxiality can be estimated. Moreover, it is found that the out-of-plane constraint effect is related to the in-plane constraint effect.

노치가공법에 의한 기계적 피로결함 시험편 제조 (Fabrication of Mechanical Fatigue Flawed Specimen with Notch Processing)

  • 홍재근;박반욱
    • 연구논문집
    • /
    • 통권32호
    • /
    • pp.55-64
    • /
    • 2002
  • Performance demonstration with real flawed specimens has been strongly required for nondestructive evaluation of safety class components in nuclear power plant. Specimen has been designed to produce mechanical fatigue flaw with tension stress and fatigue flaw has been produced to control stress and cycle, for suitable roughness. Notch condition is considered for control of fracture mode. After seal welding for fracture surface, final welding was performed to complete flaw specimen with GTAW(Gas Tungsten Arc welding) and FCAW(Flux Cored Arc Welding). It was demonstrated flaw size of flawed specimen by radiographic. testing and ultrasonic testing.

  • PDF

시편 크기 및 시험속도가 단섬유 강화 클로로프렌 고무의 관통 특성에 미치는 영향 (Effects of Specimen Size and Testing Velocity on Puncture Properties of Short-fiber Reinforced Chloroprene Rubber)

  • 류상렬;이동주
    • Composites Research
    • /
    • 제20권6호
    • /
    • pp.28-33
    • /
    • 2007
  • 단섬유 강화고무의 관통 특성에 대해 섬유 종횡비(AR: 섬유 길이/섬유 직경), 섬유 함유량, 시편 크기 그리고 시험속도를 변수로 하여 연구하였다. 기지와 단섬유 강화고무의 관통 저항은 시편 크기의 증가에 따라 감소하였고, 동일한 시편 크기에서 시험 속도의 증가에 따라 관통 저항력은 증가하였다. 각각의 섬유 함유량에서 섬유 종횡비가 클수록 높은 관통응력 값을 보였다. 인장강도와 관통응력의 비교를 통해 시편 형상의 문제점에 대해 고찰하였다. 기지와 단섬유 강화고무의 막에 작용하는 힘은 시편의 크기에 관계없이 유사한 값을 보였고, 동일한 시편 크기에서 시험속도의 증가에 따라 증가하였다. 각각의 섬유함유량에서 섬유 종횡비가 클수록 막에 작용하는 힘은 크게 나타났다 전체적으로 시편 크기, 시험속도가 단섬유 강화고무의 관통 특성에 지대한 영향을 미침을 확인하였다.

진동시험용 치구의 실험적 구조변경 설계 (Experimental Structural Dynamic Modification of Fixture for Vibration Testing)

  • 정의봉;오영세;김준엽
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.180-186
    • /
    • 1998
  • Vibration test fixture is used in random vibration control testing. The specified reference spectrum should be transmitted equally to the specimen attachment points on the fixture. In most practical cases, however, spectrum at each of specimen attachment points may be quite different from the specified reference spectrum because of the dynamic characteristics of vibration test fixture. This paper proposes the method of experimental dynamic modification of fixture system for vibration test so that the reference spectrum can be transmitted to the specimen attachment points without distortion. The stiffness of mounts of specimen and the thickness of fixture are considered as design variables. The frequency response functions of specimen used for input data are obtained from vibration testing, and the frequency response functions of fixture are obtained from finite element modeling. The sensitivities of frequency response functions at specimen attachment points to the mount stiffness are derived from synthesis method of transfer function. And the sensitivities to the thickness of fixture are also derived from finite element modeling. The presented method is verified by computer simulation and vibration testing.

  • PDF

주문진 표준사를 이용한 대형 공진주 시험 장비의 검증 (Verification of the large scale, free-free resonant testing equipment using Jumunjin sand)

  • 박인범;박철수;목영진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1415-1424
    • /
    • 2009
  • Measuring dynamic properties of gravel-sized materials demands large specimens. Due to the difficulties in experiment as well as equipment, the dynamic properties of gravel-sized material has rarely been investigated. To realize free-free end condition more properly and stabilize specimen during testing with new specimen support system, a free-free resonant column testing device, which is capable of testing gravel-sized materials and constraining a specimen in free-free boundaries, is developed. We report the calibration of the equipment and preliminary testing results on Jumunjin sand. The testing data are compared with the previous data obtained from the existing fixed-free resonant column test.

  • PDF

MEMS 소재의 기계적 특성 평가를 위한 인장형 시편 및 시험기 제작 (A Novel Tensile Specimen and Test Machine for Mechanical Properties of MEMS Materials)

  • 박준협;김정엽;이창승;좌성훈;송지호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.258-263
    • /
    • 2004
  • Mechanical property evaluation of micrometer-sized structures is necessary to help design reliable microelectromechanical systems(MEMS) devices. Most material properties are known to exhibit dependence on specimen size and such properties of microscale structures are not well characterized. This paper describes techniques developed for tensile testing of materials used in MEMS. Epi-polycrystalline silicon is currently the most widely used material, and its tensile strength has been measured as 1.52GPa. We have developed an uniaxial testing machine for testing microscale specimen using electro-magnetic actuator. The field magnet and the moving coil taken from an audio-speaker were utilized as the components of the actuator. Structure of specimen was designed and manufactured for easy handling and alignment. In addition to the static tensile tests, new techniques and procedures for measuring strength are described.

  • PDF

ECT를 응용한 라이너지의 압축강도 측정시편 개발 (A New Compressive Testing Specimen for Linerboard and Corrugating Medium)

  • 윤석기;서영범;전양
    • 농업과학연구
    • /
    • 제35권1호
    • /
    • pp.19-24
    • /
    • 2008
  • A new compressive strength test specimen for linerboard and medium was developed, and tested for its agreement with conventional testing methods such as RCT and STFI. The new specimen enables compressive testing under the changing humidity and temperature. Experimental results showed that the new specimen gave equivalent compressive strengths as the other conventional methods at a constant temperature and humidity. We'll apply the methods under the cyclic humidity and temperature conditions.

  • PDF