• Title/Summary/Keyword: Specific speed

Search Result 1,418, Processing Time 0.025 seconds

A Study on the Machinability of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 절삭성에 관한 연구)

  • Park, Jong-Nam;Kim, Jae-Yoel;Cho, Gyu-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.128-133
    • /
    • 2010
  • The Titanium has many superior characteristics which are specific strength, heat resistance, corrosion resistance, organism compatibility, non-magnetic and etc. and their quantity are abundant. this study performed turning operation of Ti-6Al-4V alloy using the TiAlN Coated Tool which treated Physical Vapor Deposition. Experimental works are also executed to measure cutting force, tool wear, chip figuration and surface roughness for different cutting conditions. As a result of study. Cutting depth influences on the cutting force much more than the feed rate and the value of the cutting force is the most stable at the depth of 1.0mm. And tool wear was serious at over 100m/min of cutting speed and cutting condition was excellent at 1.0mm of cutting depth.

Hydraulic design of fuel pump in turbo-pump system and performance evaluation using CFD (터보펌프용 연료펌프의 설계와 CFD를 이용한 성능 평가)

  • Lee, Kyoung-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.408-416
    • /
    • 2002
  • Hydraulic performance of the pump with an inducer was predicted by 3-D Navier-stokes calculation. The evaluated pump was the single-stage centrifugal pump with a separated inducer to pressurize fuel (LCH4) in Turbo-pump system with a specific speed (Ns) of approximately 0.3[rad/s, m3/s, J/kg] and a suction specific speed(s) of 15[rad/s, m3/s, J/kg]. That conventional pump was designed with the combination of 1-D theory and empirical correlation. In this study, preliminary design to select key parameters such as inlet flow coefficient was reviewed by investigating sets of the known design methods to achieve appropriate suction performance, and the performance of newly designed inducer and impeller was compared with the old one, using CFD method. The numerical results showed that the hydraulic efficiency of the new pump was predicted $5.5\%$ higher than that of the conventional one, through design parameter re-selection, configuration improvement and blade loading control

  • PDF

A Study of Pseudomonas putida Fed-batch Culture (Pseudomonas putida의 유가배양연구)

  • 김인호;김희정;송재양
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.307-310
    • /
    • 2002
  • In order to obtain high density seed cells for biofiltration, we studied batch and fed-batch culture of P. putida. Studies were carried out to find optimum fermentation conditions such as pH, concentration of glucose and agitation speed. Specific growth rate of P. putida was dependent on agitation speed and a high rpm of 300 was necessary to carry out the efficient aerobic growth of P. putida. Specific growth rate was highest at pH 7. Feeding glucose and yeast extract continuously at the initial growth phase was the most effective way to get high cell density of P. putida.

A Study on Emissions and Catalytic Conversion Efficiency Characteristics of an Electronic Control Engine Using Ethanol Blended Gasoline as Fuels

  • Cho Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.722-728
    • /
    • 2005
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiency characteristics were investigated in a multiple-point EFI gasoline engine, The results show that with the increase of ethanol concentration in the blended fuels, THC emissions were drastically reduced by up to thirty percent, And brake specific fuel consumption was increased, but brake specific energy consumption could be improved. However, unburned ethanol and acetaldehyde emissions increased. Pt/Rh based three-way catalysts were effective to reduce acetaldehyde emissions, but had low catalytic conversion efficiency for unburned ethanol. The effect of ethanol on CO and NOx emissions and their catalytic conversion efficiency had close relation to the engine's speed, load and air/fuel ratio. Furthermore fuels blended with thirty percent ethanol by volume could dramatically reduced THC CO and NOx emissions at idle speed.

The Welding Process Control Using Neural Network Algorithm (Neural Network 알고리즘을 이용한 용접공정제어)

  • Cho Man Ho;Yang Sang Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.84-91
    • /
    • 2004
  • A CCD camera with a laser stripe was applied to realize the automatic weld seam tracking in GMAW. It takes relatively long time to process image on-line control using the basic Hough transformation, but it has a tendency of robustness over the noises such as spatter and arc tight. For this reason, it was complemented with adaptive Hough transformation to have an on-line processing ability for scanning specific weld points. The adaptive Hough transformation was used to extract laser stripes and to obtain specific weld points. The 3-dimensional information obtained from the vision system made it possible to generate the weld torch path and to obtain the information such as width and depth of weld line. In this study, a neural network based on the generalized delta rule algorithm was adapted for the process control of GMA, such as welding speed, arc voltage and wire feeding speed.

A Study on the Efficient m-step Parallel Generalization

  • Kim, Sun-Kyung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.13-16
    • /
    • 2005
  • It would be desirable to have methods for specific problems, which have low communication costs compared to the computation costs, and in specific applications, algorithms need to be developed and mapped onto parallel computer architectures. Main memory access for shared memory system or global communication in message passing system deteriorate the computation speed. In this paper, it is found that the m-step generalization of the block Lanczos method enhances parallel properties by forming m simultaneous search direction vector blocks. QR factorization, which lowers the speed on parallel computers, is not necessary in the m-step block Lanczos method. The m-step method has the minimized synchronization points, which resulted in the minimized global communications compared to the standard methods.

  • PDF

Design and Experimental Studies of Radial-Outflow Type Diagonal Flow Fan

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • In order to apply the design method of diagonal flow fan based on axial flow design to the design of radial-outflow type diagonal flow fan which has lower specific speed of 600-700 [$min^{-1}$, $m^3/min$, m], radial-outflow type diagonal flow fan which specific speed was 670 [$min^{-1}$, $m^3/min$, m] was designed by a quasi three-dimensional design method. Experimental investigations were conducted by fan characteristics test, flow surveys by a five-hole probe and a hot wire probe. Fan characteristics test agreed well with the design values. In the flow survey at rotor outlet, the characteristic region was observed. Two flow phenomena are considered as the cause of the characteristic region, one is tip leakage vortex near rotor tip and another is pressure surface separation on the rotor blade.

Emission Characteristics of a Gasoline Engine Using Ethanol Blended Fuel (가솔린 기관의 에탄올혼합연료의 배출가스 특성에 관한 연구)

  • 조행묵;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.516-521
    • /
    • 2004
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiencies characteristics were investigated in gasoline engine with an electronic fuel injection. The results showed that the increase of ethanol concentration in the blended fuels brought the reduction of THC and $CO_2$ emissions from the gasoline engine. THC emissions were drastically reduced up to thirty percent. And brake specific fuel consumption was increased. but brake specific energy consumption was similar level. However. unburned ethanol and acetaldehyde emissions increased. The conversion efficiency of Pt/Rh based three-way catalysts and the effect of ethanol on CO and NOx emissions were investigated by the change of engine speed. load and air/fuel ratio. Furthermore, the ethanol blended fuel results in the reduction effect of THC. CO and NOx emissions at idle speed.

An Experimental Study on Effects of EGR Rate upon Exhaust Emissions in Small High-Speed Diesel Engines (소형 고속 디젤기관의 배기 배출물에 미치는 배기 재순환율의 영향에 관한 실험적 연구)

  • 임재근;배명환;김종일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.60-77
    • /
    • 1992
  • The effects of exhaust gas recirculation(EGR) on the characteristics of exhaust emissions and specific fuel consumption have been investigated using an eight-cylinder, four cycle, direct injection diesel engine operating at several loads and speeds. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. In conclusion, it is found that $NO_{x}$ emission is markedly reduced with the drop of burnt gas temperature at high speeds and loads especially as the EGR rate increases, while the soot particulate rises with EGR rate and load at a given engine speed, especially high loads. The reduction of exhaust emissions within the Korea heavy duty diesel engine emission standards can be roughly achieved by the optimal EGR rate without degarding the specific fuel consumption, based on the correlations between exhaust emissions.

  • PDF

A Study of NPSH Required Performance Improvement for a Industrial Vertical Pump (산업용 수직펌프의 흡입성능 향상 연구)

  • Chung, Kyung-Nam;Park, Jong-Hwoo;Kim, Yong-Kyun;Kim, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.909-915
    • /
    • 2009
  • In this paper, a study of performance improvement for a centrifugal vertical pump having specific speed of 330 is introduced. The existing model has high efficiency but needs better NPSH required performance. Such that new pump model is designed to obtain larger suction specific speed. 6 design parameters considered to affect pump performance are selected for impeller design. Key design parameters are investigated using by design of experiments and CFD, and impeller inlet diameter is increased to get better suction performance. The amount of inlet diameter increase is determined by using cavitation analysis. The results show that new design model has higher efficiency and better NPSH required performance than the existing model.