• 제목/요약/키워드: Specific habitat

검색결과 182건 처리시간 0.028초

Development of a habitat suitability index for the habitat restoration of Pedicularis hallaisanensis Hurusawa

  • Rae-Ha, Jang;Sunryoung, Kim;Jin-Woo, Jung;Jae-Hwa, Tho;Seokwan, Cheong;Young-Jun, Yoon
    • Journal of Ecology and Environment
    • /
    • 제46권4호
    • /
    • pp.316-323
    • /
    • 2022
  • Background: We developed a habitat suitability index (HSI) model for Pedicularis hallaisanensis, a Grade II Endangered Species in South Korea. To determine the habitat variables, we conducted a literature review on P. hallaisanensis with a specific focus on the associated spatial factors, climate, topography, threats, and soil factors to derive five environmental factors that influence P. hallaisanensis habitats. The specific variables were defined based on the collected data and consultations with experts in the field, with the validity of each variable tested through field studies. Results: Mt. Seorak had a suitable habitat area of 2.48 km2 for sites with a score of 1 (0.62% of total area) and 0.01 km2 for sites with a score of 0.9. Mt. Bangtae had a suitable habitat area of 0.03 km2 for sites with a score of 1 (0.02% of total area) and 0 km2 for sites with a score of 0.9. Mt. Gaya showed 0.13 km2 of suitable habitat for sites with a score of 1 (0.17% of total area) and 0 km2 for sites with a score of 0.9. Lastly, Mt. Halla showed 3.12 km2 of suitable habitat related to sites with a score of 1 (2.04% of total area) and 4.08 km2 of sites with a score of 0.9 (2.66% of total area). Mt. Halla accounts for 73.1% of the total core habitat area. Considering the climatic, soil, and forest conditions together with standardized collection sites, our results indicate that Mt. Halla should be viewed as a core habitat of P. hallaisanensis. Conclusions: The findings in this study provide useful data for the identification of core habitat areas and potential alternative habitats to prevent the extinction of the endangered species, P. hallaisanensis. Furthermore, the developed HSI model allows for the prediction of suitable habitats based on the ecological niche of a given species to identify its unique distribution and causal factors.

델파이기법을 이용한 법적보호종 서식환경평가의 환경영향평가 적용방안 개발 - 파주시, 시흥시, 안산시, 화성시에서의 황조롱이를 대상으로 - (Application of the Habitat Evaluation Procedure(HEP) for Legally Protected Wildbirds using Delphi Technique to Environmental Impact Assessment - In case of the Common Kestrel(Falco tinnunculus) in four areas (Paju, Siheung, Ansan, Hwaseong) -)

  • 이석원;노백호;유정칠
    • 환경영향평가
    • /
    • 제22권3호
    • /
    • pp.277-290
    • /
    • 2013
  • This study was carried out to propose the new procedure to apply Habitat Evaluation Procedure(HEP) of target species using delphi technique, which is suitable to develop endangered species with few researches and ecological knowledges. To identify habitat quality of specific species in development project site, we can develop habitat model and create habitat suitability maps. In this study, we select the Common Kestrel(Falco tinnunculus) as target species in four areas(Paju, Siheung, Ansan, Hwaseong) which is located near the Seoul metropolitan area. The Delphi technique was selected to get the reliable information on the species and habitats requirements. Through the delphi approach, seven habitat components were determined as suitable variables for the Common Kestrel: density($n/km^2$) of small mammals, area($km^2$) of bare-grounds, pasturelands and riparian, and open area(%), spatial distribution and area of croplands, landscape diversity, breeding sites(tall trees, cliffs, high-rise buildings), and the length of shelf. Habitat variables used in this model were classified into two categories: % of suitable land-cover type(open areas, croplands, pasturelands, wetlands, and baregrounds) and the quality of feeding sites(within 250m from edges of woodlands). Habitat quality of the Common Kestrel was assessed against occurred sites derived from the nationwide survey. Predicted habitat suitability map were closely related to the observed sites of the endangered avian species in the study areas. With the habitat suitability map of the Common Kestrel, we assess the environmental impacts with habitat loss after development project in environmental impact assessment.

Multivariate Procedure for Variable Selection and Classification of High Dimensional Heterogeneous Data

  • Mehmood, Tahir;Rasheed, Zahid
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.575-587
    • /
    • 2015
  • The development in data collection techniques results in high dimensional data sets, where discrimination is an important and commonly encountered problem that are crucial to resolve when high dimensional data is heterogeneous (non-common variance covariance structure for classes). An example of this is to classify microbial habitat preferences based on codon/bi-codon usage. Habitat preference is important to study for evolutionary genetic relationships and may help industry produce specific enzymes. Most classification procedures assume homogeneity (common variance covariance structure for all classes), which is not guaranteed in most high dimensional data sets. We have introduced regularized elimination in partial least square coupled with QDA (rePLS-QDA) for the parsimonious variable selection and classification of high dimensional heterogeneous data sets based on recently introduced regularized elimination for variable selection in partial least square (rePLS) and heterogeneous classification procedure quadratic discriminant analysis (QDA). A comparison of proposed and existing methods is conducted over the simulated data set; in addition, the proposed procedure is implemented to classify microbial habitat preferences by their codon/bi-codon usage. Five bacterial habitats (Aquatic, Host Associated, Multiple, Specialized and Terrestrial) are modeled. The classification accuracy of each habitat is satisfactory and ranges from 89.1% to 100% on test data. Interesting codon/bi-codons usage, their mutual interactions influential for respective habitat preference are identified. The proposed method also produced results that concurred with known biological characteristics that will help researchers better understand divergence of species.

제주지역 상동나무의 자생지 생육환경 및 식생조사 (Vegetation and Habitat Environment of Sageretia thea in Jeju Island)

  • 송상철;송창길;김주성
    • 한국약용작물학회지
    • /
    • 제22권4호
    • /
    • pp.301-305
    • /
    • 2014
  • This study was carried out to investigate the vegetation and habitat environment of Sageretia thea which is distributed in Jeju island, Korea. Sageretia thea were mainly distributed to the west area in Jeju island. Soil pH and EC of Sageretia thea habitat were 5.8 and $0.34dS{\cdot}m^{-1}$. The contents of organic matter, available phosphate, exchangeable potassium, exchangeable sodium, exchangeable magnesium and exchangeable calcium were 15.27%, $13.6mgkg^{-1}$, $0.27cmol_+kg^{-1}$, $1.3cmol_+kg^{-1}$, $1.7cmol_+kg^{-1}$, $4.9cmol_+kg^{-1}$, respectively. Thirty one taxa including 25 families, 31 genus, 27 species and 4 varieties were identified surrounding Sageretia thea habitat. Specific plant species were 1 taxon in III grade, 1 taxon in I grade and 3 taxa in I grade.

Habitat Evaluation of Japanese Black Bear using GIS

  • Masuyama, Tetsuo;Yamamoto, Toshiharu;Hara, Keitarou;Yasuda, Yoshizumi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1134-1136
    • /
    • 2003
  • In this research, GIS based evaluation methods were applied to habitats of Japanese black bear (Ursus thibetanus japonicus Schlegel) in northern Honshu. The study area was divided into 828 small watershed units , and five GIS indexes, Vegetation Type(V.T.), Extent of Forest Cover (E.F.C.) Slope Incline (S.I), Average Altitude (A.A.) and Road Density(R.D.), were used to evaluate each watershed unit in terms of suitability as black bear habitat. In addition, Interspersion and Juxtaposition spatial indices were calculated for each watershed unit. The results clearly identified the regions with the most suitable habitats, indicating that this methodology is suitable for application to various environmental planning efforts, such as regional development master plans, project-specific environmental impact assessments, species management plans and biodiversity conservation plans.

  • PDF

A Study on the Relationship between Spatial Distribution and External Factors of Anura Amphibians

  • Hae-In Jeong;Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • 제11권1호
    • /
    • pp.356-362
    • /
    • 2023
  • Identifying the distribution of species and specific factors related to it is very important because it is habitat conservation that is greatly linked not only to ecological research but also to human health. After all, protecting each one's habitat will protect wildlife and further maintain a healthy ecosystem. Therefore, in this study, data were collected, compared, and analyzed through existing studies and field-oriented surveys. The results of the survey confirmed high species diversity in agricultural areas and forest areas that can reduce moisture supply and moisture loss, and the non-segmental environment, that is, ecological connectivity, was largely influenced by amphibian species diversity. It was confirmed that the non-fragmented environment, that is, ecological connectivity, was greatly affected by amphibian species diversity. In addition, the three factors that affect amphibian survival are: It was identified as the effect of not establishing a buffer space, the effect on the ecological transformation around the habitat during the summer rainy season, and the effect on the disconnected ecological environment.

Organism-environment interactions and differential gene expression patterns among open-coastal and estuarine populations of Porphyra umbilicalis Kützing (Rhodophyta) in the Northwest Atlantic

  • Eriksen, Renee L.;Klein, Anita S.
    • Fisheries and Aquatic Sciences
    • /
    • 제21권8호
    • /
    • pp.28.1-28.12
    • /
    • 2018
  • Intertidal macroalgae are exposed to many abiotic stress factors, and they must regularly react to changes in their environment. We used RNA-seq to describe how Porphyra umbilicalis (Rhodophyta) changes gene expression patterns to interact with different habitats. Tissue samples were taken from a typical habitat along the open-coast of the Northwest Atlantic, as well as from a rare, atypical habitat in an estuarine tidal rapid environment. Differential gene expression analyses suggest that pathogic bacteria and viruses may be a significant factor influencing the transcriptome in the human-impacted estuarine environment, but the atypical habitat does not necessarily induce more stress in Porphyra umbilicalis growing there. We found genes related to nitrogen transport are over-expressed in tissue from the open-coastal site compared to those from the estuarine site, where environmental N levels approach hypertrophic levels. Low N levels impede growth, but high levels are toxic to cells, and we use qPCR to show this species regulates expression of a putative high-affinity $NH_4{^+}$ transporter under low and high N conditions. Differences in expression of this transporter in these habitats appear to be inherited from parent to offspring and have general implications for adaptation to habitat in other species that are capable of asexual reproduction, as well as more specific implications for this species' use in aquaculture.

Grid Method Applied for Establishing the Ecological and Natural Map: A Review Based on Results of Surveys of Endangered Mammals

  • Yong-Ki, Kim;Jeong-Boon, Lee;Sung Je, Lee;Jang Sam, Cho;Hyosun, Leem
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제4권1호
    • /
    • pp.9-15
    • /
    • 2023
  • We analyzed data of endangered mammals in the 1st grade zone of the Ecological and Natural Map of Korea that were obtained through 202 field surveys over six years. Five endangered mammal species were identified including otters, long-tailed gorals, martens, leopard cats, and flying squirrels. The total number of habitat traces collected was 918, of which 897 traces (97.7%) were excrement types. The total surveyed distance was 697.7 km and there were 2,184 grids of 250×250 m each. Of these grids, 441 or 20.2% were confirmed as habitats of endangered mammals. Moreover, we analyzed results of repeated surveys in the same area by converting them into individual one-time surveys, accounting for 23.1% of the total area. The flying squirrel showed a low correlation with the frequency of field surveys but showed many habitats in a specific season. Leopard cats and martens were correlated with the frequency of field surveys. Results of analysis confirm that the grid method used for establishing the Ecological and Natural Map is unsuitable for the habitat division of flying squirrels, otters, leopard cats, and martens, and it does not reflect the actual habitats of these four species. Therefore, we propose that the concept of the habitat grid of species must be reevaluated and improved, specifically for endangered mammals.

Intergenerics Nuclear Transfer Technology for Conservation of Endangered Species

  • Lee, B.C.;S.K. Kang;J.K. Cho;B. Bavister;W.S. Hwang
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.56-62
    • /
    • 2002
  • The International Union for Conservation of Nature and Natural Resources (IUCN) considers the western/lowland bongo Tragelaphus eurycerus eurycerus to be a threatened species, and the eastern/mountain bongo Tragelaphus eurycerus isaaci an endangered species[1]. Although extinction is considered by many biologists to be a natural process during evolution, the exponential growth of the human population has drastically and prematurely reduced the numbers and genetic diversity of many species[2]. Species have evolved to adapt to a specific habitat or environment that meet their survival needs. Alteration or destruction of their habitat results in a species becoming incapable of adapting and hence becoming threatened with extinction. A widespread scientific and public consensus has emerged suggesting that governments should assign high priority to the maintenance of biological diversity via habitat preservation and management far species conservation[3]. Unfortunately, the loss of biological diversity far surpasses the available conservation resources and species are lost forever on a daily basis[4]. Notwithstanding the focus on habitat preservation and wildlife management, conservation biologists have also become increasingly interested in using the technologies of reproductive and developmental biology to help manage or rescue endangered species[5].

  • PDF

훼손된 도시생태계 생태복원 평가지표 제시 및 복원성과 분석 (Evaluation indicators for the restoration of degraded urban ecosystems and the analysis of restoration performance)

  • 손희정;김도희;김나영;홍진표;송영근
    • 한국환경복원기술학회지
    • /
    • 제22권6호
    • /
    • pp.97-114
    • /
    • 2019
  • This study aims to analyze the effect of urban ecosystem restoration projects by evaluating the short-term restoration performance of the project sites, from both qualitative and quantitative evaluations. In this study, for the qualitative evaluation, we derived the evaluation frame from previous studies and literature. For the quantitative evaluation, the changes in ecological connectivity after the restoration project were described using landscape permeability and network analysis. In addition, changes in habitat quality after the restoration project were evaluated by using InVEST Habitat Quality Model. These evaluations were applied to the three natural madang (ecological restoration) projects and two ecosystem conservation cooperation projects. As a result, three categories, 10 indicators, and 13 sub-indicators were derived from literature as the evaluation frame for this study. In the case of quantitative evaluation of restoration performance, habitat quality increased by 45% and ecological connectivity by 37% in natural-madang, and habitat quality by about 12% and ecological connectivity by about 19% in ecosystem conservation cooperation projects. This implies that the ecological restoration project can increase the ecological connectivity and the habitat quality of degraded sites even in a short period of time by improving the land-cover and land use. The results by applying the evaluation frame indicated that ecological and environmental factors and the ecological functions were improved by the restoration works, even though the magnitude of performances were diverse depending on the specific evaluation items, project type, and site characteristics. This study clarified that the success of ecological restoration project should be assessed by both of the short-term and long-term goals, which can be achieved by the maintenance and sustainable management, respectively.