• 제목/요약/키워드: Specific conductivity

검색결과 522건 처리시간 0.023초

Hollow ITO 제조법 및 응용 (Preparation and Application of ITO Hollow Spheres)

  • 임정섭;황병우;정동운
    • 대한화학회지
    • /
    • 제56권1호
    • /
    • pp.102-107
    • /
    • 2012
  • Polystyrene 입자를 template로 사용하여 hollow ITO 입자를 제조하였다. 제조된 hollow ITO 입자의 비중은 기존의 일반적인 ITO 입자의 비중에 비하여 거의 1/2 수준으로 감소하였다. 코팅제 제조를 위하여 hollow ITO와 고분자를 혼합할 때 감소된 비중 때문에 ITO의 층 분리가 지연되었다. 고분자 용액을 제조할 때 hollow ITO 입자가 깨지면서 많은 조각이 생성되고 이들 사이의 접촉 면적이 증가하여 코팅 용액의 전도도는 오히려 증가하였다.

Ionic Liquids Containing 1,1-Dicyano-1-acetylmethanide Anion as Potential Electrolytes

  • Winoto, Haryo Pandu;Agarwal, Shalu;Im, Jin-Kyu;Cheong, Min-Serk;Lee, Je-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2999-3003
    • /
    • 2012
  • Various types of room temperature ionic liquids (RTILs) containing 1,1-dicyano-1-acetylmethanide anion ($[C(CN)_2(COCH_3)]^-$, $[DCNAcC]^-$) were prepared and their physical and electrochemical properties were studied. All of these ILs exhibited high thermal stabilities over $200^{\circ}C$ and relatively high ionic conductivities up to 29.4 $mS\;cm^{-1}$ at $80^{\circ}C$. Although the ionic conductivity of IL containing bis(trifluoromethanesulfonyl)-imide ($[Tf_2N]^-$) anion is higher than that of ILs bearing $[DCNAcC]^-$ anion, the specific capacitance of ILs bearing $[DCNAcC]^-$ anion are higher than that of IL containing $[Tf_2N]^-$ anion and showed high temperature dependence. Such favorable electrochemical properties of these ILs are likely to be attributed to the efficient dissociation of cation and anion at higher temperature and enhanced electrosorption of $[DCNAcC]^-$ anion at the electrode.

수평관 내 물-공기 이상류 거동에 관한 실험적 연구 (An Experimental Investigation on the Behavior of Water-Air Two-phase Flows in a Horizontal Pipe)

  • 조한일;이경수;류시완
    • 한국안전학회지
    • /
    • 제32권1호
    • /
    • pp.75-81
    • /
    • 2017
  • A series of laboratory experiments has been performed in order to investigate the behavior of water-air two-phase flow in a horizontal pipe. A conductivity meter has been applied to detect the irregular alternation of air at the specific points in flows. The experimental condition has been established according to the water and air flowrates. Passing time, which is the time length for a measuring probe to pass through the entire length of a specific bubble, has been defined to evaluate the size of bubbles in the flow. Passing length, which can be considered as the equivalent value to bubble size and determined from the product of passing time and cross-sectional averaged velocity, and its corresponding occurrence frequency have been analyzed to classify the air flow patterns according to the condition of air and water fluxes. From the result, the dependancy of flow patterns on the variation of air-water flux ratio has been investigated and the existence of thresholds also checked for classifying the behavior of air in the flow.

전해질 농도에 따른 아연-공기 전지의 전기화학적 특성 (Effects of Electrolyte Concentration on Electrochemical Properties of Zinc-Air Batteries)

  • 한지우;조용남
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.798-803
    • /
    • 2019
  • The self-discharge behavior of zinc-air batteries is a critical issue induced by corrosion and hydrogen evolution reaction (HER) of zinc anode. The corrosion reaction and HER can be controlled by a gelling agent and concentration of potassium hydroxide (KOH) solution. Various concentrations of KOH solution and polyacrylic acid have been used for gel electrolyte. The electrolyte solution is prepared with different concentrations of KOH (6 M, 7 M, 8 M, 9 M). Among studied materials, the cell assembled with 6 M KOH gel electrolyte exhibits the highest specific discharge capacity and poor capacity retention. Whereas, 9 M KOH gel electrolyte shows high capacity retention. However, a large amount of hydrogen gas is evolved with 9 M KOH solution. In general, the increase in concentration is related to ionic conductivity. At concentrations above 7 M, the viscosity increases and the conductivity decreases. As a result, compared to other studied materials, 7 M KOH gel electrolyte is suitable for Zn-air batteries because of its higher capacity retention (92.00 %) and specific discharge capacity (351.80 mAh/g) after 6 hr storage.

가솔린 기관(機關)의 혼합기(混合氣) 성분(成分)이 연소특성(燃燒特性)에 미치는 영향(影響) (연소(燃燒) 속도(速度)에 미치는 영향(影響)) (The Effect of Mixture Component in a Gasoline Engine on Combustion (The Effect of Combustion Velocity))

  • 송재익
    • 한국분무공학회지
    • /
    • 제2권4호
    • /
    • pp.47-53
    • /
    • 1997
  • By using a premixed laminar burner, the effect of mixture component on laminar burning velocity($S_L$) was investigated. The following was made clear ; (1)As the humidity$(H_2O)$, $CO_2$ and Ar in mixture is increased, $S_L$ decreased in proportion to quantity of those dilution gases. (2) The heat reaction theory says that mean thermal conductivity $(\lambda_m)$, specific heat $(C_{pm})$ of mixture and adiabatic flame temperatures $(T_b)$ affect $S_L$. As a result of theoretical analysis, the effect of $\lambda_m\;and\;C_{pm}$ on $S_L$ is less than 1/25 of the effect of $T_b$, so the effect of $\lambda_m\;and\;C_{pm}$ can be ignored. (3) From experimental results, it was confirmed that $\ln(S_L)$ is proportional to $(1/T_b)$, that is, the effect of $H_2O$ on $S_L$ is mainly caused by changes of $T_b$. This conclusion was verified by the fact increases of $H_2O,\;CO_2$ and Ar decrease the intensity of radiation typical $C_2$, CH, and OH in the same manner.

  • PDF

Properties of Styrene-Butadiene Rubber Nanocomposites Reinforced with Carbon Black, Carbon Nanotube, Graphene, Graphite

  • Song, Sung-Ho;Kwon, O-Seok;Jeong, Ho-Kyun;Kang, Yong-Gu
    • 한국재료학회지
    • /
    • 제20권2호
    • /
    • pp.104-110
    • /
    • 2010
  • The characteristics of all polymer composites containing carbon materials are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape. As a consequence, in this paper we discuss the aspects of the mechanical, electrical and thermal properties of composites with different fillers of carbon black, carbon nanotube (CNT), graphene and graphite and focus on the relationship between factors and properties, as mentioned above. Accordingly, we fabricate rubber composites that contain various carbon materials in carbon black-based and silica based-SBR matrixes with dual phase fillers and use scanning electron microscopy, Raman spectroscopy, a rhometer, an Instron tensile machine, and a thermal conductivity analyzer to evaluate composites' mechanical, fatigue, thermal, and electronic properties. In mechanical properties, hardness and 300%-modulus of graphene-composite are sharply increased in all cases due to the larger specific surface. Also, it has been found that the thermal conductivity of the CNT-composite is higher than that of any of the other composites and that the composite with graphene has the best electrical properties.

Physical Properties of Cement System Insulation Using Blast Furnace Slag

  • Seo, Sung Kwan;Park, Jae Wan;Cho, Hyeong Kyu;Chu, Yong Sik
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.61-66
    • /
    • 2018
  • In this study, fabrication method of inorganic insulation were studied to reduce $CO_2$ from buildings. Main materials for inorganic insulation were used cement, blast furnace slag and aluminum powder as foaming agent. Mixing ratio of cement and slag was controlled and physical properties of inorganic insulation were analyzed. When inorganic insulation was fabricated using cement and slag, expanded slurries were not sunken and hardened normally. Pore size was 0.5 - 2 mm; mean pore size was about 1mm in inorganic insulation. Compressive strength of inorganic insulation increased with curing time and increased slightly with cement fineness. However, specific gravity decreased slightly with curing time; this phenomenon was caused by evaporation of adsorptive water. When inorganic insulation was dried at $60^{\circ}C$, compressive strength was higher than that of undried insulation. The highest compressive strength was found with a mixture of cement (50%) and slag (30%) in inorganic insulation. Compressive strength was 0.32 MPa, thermal conductivity was 0.043 W/mK and specific gravity was $0.12g/cm^3$.

Dependence of Thermal Properties on Crystallization Behavior of CaMgSi2O6 Glass-Ceramics

  • Jeon, Chang-Jun;Yeo, Won-Jae;Kim, Eung-Soo
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.686-691
    • /
    • 2009
  • The effects of thermal properties on the crystallization behavior of $CaMgSi_2O_6$ glass-ceramics were investigated as a function of sintering temperature from 800$^{\circ}C$ to 900$^{\circ}C$. The crystallization behavior of the specimens depended on the sintering temperature, which could be evaluated from the differential thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. With increasing sintering temperature, the thermal conductivity of the sintered specimens increased, while the coefficient of thermal expansion (CTE) of the sintered specimens decreased. These results could be attributed to the increase of crystallization, confirmed from the estimation by density measurements. Also, the thermal diffusivity and specific heat capacity of the sintered specimens were discussed with relation to the sintering temperature. Typically, a thermal conductivity of 3.084 $W/m^{\circ}C$, CTE of 8.049 $ppm/^{\circ}C$, thermal diffusivity of 1.389 $mm^2/s$ and specific heat capacity of 0.752 $J/g^{\circ}C$ were obtained for $CaMgSi_2O_6$ specimens sintered at 900$^{\circ}C$ for 5 h.

Analysis of electrochemical double-layer capacitors using a Natural Rubber-Zn based polymer electrolyte

  • Nanditha Rajapaksha;Kumudu S. Perera;Kamal P. Vidanapathirana
    • Advances in Energy Research
    • /
    • 제8권1호
    • /
    • pp.41-57
    • /
    • 2022
  • Electrochemical double-layer capacitors (EDLCs) based on solid polymer electrolytes (SPEs) have gained an immense recognition in the present world due to their unique properties. This study is about preparing and characterizing EDLCs using a natural rubber (NR) based SPE with natural graphite (NG) electrodes. NR electrolyte was consisted with 49% methyl grafted natural rubber (MG49) and zinc trifluoromethanesulfonate ((Zn(CF3SO3)2-ZnTF). It was characterized using electrochemical impedance spectroscopy (EIS) test, dc polarization test and linear sweep voltammetry (LSV) test. NG electrodes were made using a slurry of NG and acetone. EIS test, cyclic voltammetry (CV) test and galvanostatic charge discharge (GCD) test have been done to characterize the EDLC. Optimized electrolyte composition with NR: 0.6 ZnTF (weight basis) exhibited a conductivity of 0.6 x 10-4 Scm-1 at room temperature. Conductivity was predominantly due to ions. The electrochemical stability window was found to be from 0.25 V to 2.500 V. Electrolyte was sandwiched between two identical NG electrodes to fabricate an EDLC. Single electrode specific capacitance was about 2.26 Fg-1 whereas the single electrode discharge capacitance was about 1.17 Fg-1. The EDLC with this novel NR-ZnTF based SPE evidences its suitability to be used for different applications with further improvement.

경기도, 강원도, 충청도 일대의 암석 열물성 특성 연구 (A Study on Thermal Properties of Rocks from Gyeonggi-do Gangwon-do, Chungchung-do, Korea)

  • 박정민;김형찬;이영민;송무영
    • 자원환경지질
    • /
    • 제40권6호
    • /
    • pp.761-769
    • /
    • 2007
  • 경기도, 강원도, 충청도 일대에서 화성암, 변성암, 퇴적암의 총 712개의 암석을 채취하여 열물성을 측정하였다. 측정 결과로 화성암의 평균 열전도도는 3.58W/m-K, 변성암은 4.16W/m-K, 퇴적암은 4.53W/m-K이다. 우리나라의 경우 화강암과 편마암이 주를 이루고 있는데 이에 대한 열물성 값을 보면 화강암의 열전도도는 2.13-5.87W/m-K의 범위를 가지며, 평균 열전도도는 3.57W/m-K, 편마암은 2.26-6.67W/m-K의 범위를 가지며, 평균 열전도도는 3.945W/m-K이다. 화강암의 평균 열확산율은 $1.43mm^2/sec$, 비열은 0.914J/gK, 편마암의 평균 열확산율은 $1.55mm^2/sec$, 비열은 0.912J/gK로 나타났다. 일반적으로 같은 암석의 열전도도 값의 범위가 큰 이유는 암석의 구성광물, 이방성 등에 영향을 받기 때문이다.