Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.12.686

Dependence of Thermal Properties on Crystallization Behavior of CaMgSi2O6 Glass-Ceramics  

Jeon, Chang-Jun (Department of Materials Engineering, Kyonggi University)
Yeo, Won-Jae (Department of Materials Engineering, Kyonggi University)
Kim, Eung-Soo (Department of Materials Engineering, Kyonggi University)
Publication Information
Korean Journal of Materials Research / v.19, no.12, 2009 , pp. 686-691 More about this Journal
Abstract
The effects of thermal properties on the crystallization behavior of $CaMgSi_2O_6$ glass-ceramics were investigated as a function of sintering temperature from 800$^{\circ}C$ to 900$^{\circ}C$. The crystallization behavior of the specimens depended on the sintering temperature, which could be evaluated from the differential thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. With increasing sintering temperature, the thermal conductivity of the sintered specimens increased, while the coefficient of thermal expansion (CTE) of the sintered specimens decreased. These results could be attributed to the increase of crystallization, confirmed from the estimation by density measurements. Also, the thermal diffusivity and specific heat capacity of the sintered specimens were discussed with relation to the sintering temperature. Typically, a thermal conductivity of 3.084 $W/m^{\circ}C$, CTE of 8.049 $ppm/^{\circ}C$, thermal diffusivity of 1.389 $mm^2/s$ and specific heat capacity of 0.752 $J/g^{\circ}C$ were obtained for $CaMgSi_2O_6$ specimens sintered at 900$^{\circ}C$ for 5 h.
Keywords
diopside; crystallization; thermal properties; sintering temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 J. H. Kim, S. J. Hwang, W. K. Sung and H. S. Kim, J. Electroceram., 23, 209 (2009)   DOI
2 A. Goel, D. U. Tulyaganov, S. Agathopoulos, M. J. Ribeiro and J. M. F. Ferreira, J. Eur. Ceram. Soc., 27, 3231 (2007)   DOI   ScienceOn
3 H. E. Kissinger, Anal. Chem., 29, 1702 (1957)   DOI
4 J. A. Augis and J. E. Bennett, J. Therm. Anal., 13, 283 (1978).   DOI
5 F. Branda, A. Costantini and A. Buri, Thermochim. Acta, 217, 207 (1993)   DOI   ScienceOn
6 A. Karamanov, L. Arrizza, I. Matekovits, M. Pelino, Ceram. Int., 30, 2129 (2004)   DOI   ScienceOn
7 J. H. Lim and S. J. Park, Kor. J. Mater. Res., 19(8), 417 (2009)   DOI   ScienceOn
8 G. H. Chen and X. Y. Liu, J. Alloys Compd., 431, 282 (2007)   DOI   ScienceOn
9 K. Omori, Am. Mineral., 56, 1607 (1971)
10 A. Goel, E. R. Shaaban, D. U. Tulyaganov and J. M. F. Ferreira, J. Am. Ceram. Soc., 91(8), 2690 (2008)   DOI   ScienceOn
11 A. Karamanov and M. Pelino, J. Eur. Ceram. Soc., 19, 649 (1998)   DOI   ScienceOn
12 R. Knoche, D. B. Dingwell and S. L. Webb, Geochim. Cosmochim. Acta, 56, 689 (1992)   DOI   ScienceOn
13 S. N. Salama, H. Darwish and H. A. A. Mosallam, J. Eur. Ceram. Soc., 25, 1133 (2005)   DOI   ScienceOn