• Title/Summary/Keyword: Specific capacity

Search Result 1,551, Processing Time 0.026 seconds

The Effects of Microstructure in Austenitic 316L Stainless Steels on the Strength and Damping Capacity (오스테나이트계 316L 스테인리스강의 강도 및 감쇠능에 미치는 미세조직의 영향)

  • SON DONG-WOOK;LEE JONG-MOON;KIM HYO-JONG;NAM KI-WOO;PARK KYU-SEOP;KANG CHANG-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.1-6
    • /
    • 2006
  • The effects of microstructure on the damping capacity and tensile properties of 316L stainless steel were investigated. Increasing the degree of cold working, the volume fraction of $\varepsilon-martensite$ decreased after rising to maximum value at specific level of cold working, the volume fraction of d-martensite slowly increased and then dramatically increased from the point of decreasing $\varepsilon-martensite$ volume fraction. Increasing the degree of cold working, the behnvior of damping capacity is similar to that of the $\varepsilon-martensite$. After the damping capacity showing the maximum value at about $20\%$ of cold rolling, damping capacity was decreased with the volume fraction of $\varepsilon-martensite$. Tensile strength was proportional to the volume fraction of d-martensite, and elongation steeply decreased in the range low volume fraction of a'-martensite, then slowly decreased in range the above $10\%$ volume fraction of d-martensite. The damping capacity and elongation is strongly controlled by the volume fraction of $\varepsilon$ martensite with liner relationship. However, the effect of the volume fraction of d-martensite and austenite phase on the damping capacity was not observed. Tensile strength was governed by the volume fraction of d-martensite.

Evaluation and Improvement of Deformation Capacities of Shear Walls Using Displacement-Based Seismic Design

  • Oh, Young-Hun;Han, Sang-Whan;Choi, Yeoh-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.55-61
    • /
    • 2006
  • RC shear walls are frequently used as lateral force-resisting system in building construction because they have sufficient stiffness and strength against damage and collapse. If RC shear walls are properly designed and proportioned, these walls can also behave as ductile flexural members like cantilevered beams. To achieve this goal, the designer should provide adequate strength and deformation capacity of shear walls corresponding to the anticipated deformation level. In this study, the level of demands for deformation of shear walls was investigated using a displacement-based design approach. Also, deformation capacities of shear walls are evaluated through laboratory tests of shear walls with specific transverse confinement widely used in Korea. Four full-scale wall specimens with different wall boundary details and cross-sections were constructed for the experiment. The displacement-based design approach could be used to determine the deformation demands and capacities depending on the aspect ratio, ratio of wall area to floor plan area, flexural reinforcement ratio, and axial load ratio. Also, the specific boundary detailing for shear wall can be applied to enhance the deformation capacity of the shear wall.

The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers

  • Bai, Byong-Chol;Kim, Jong-Gu;Naik, Mehraj-Ud-Din;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.171-176
    • /
    • 2011
  • Polyacrylonitrile-based carbon nanofibers (CNFs) containing Ti and Mn were prepared by electrospinning. The effect of metal content on the hydrogen storage capacity of the nanofibers was evaluated. The nanofibers containing Ti and Mn exhibited maximum hydrogen adsorption capacities of 1.6 and 1.1 wt%, respectively, at 303 K and 9 MPa. Toward the development of an improved hydrogen storage system, the optimum conditions for the production of metalized CNFs were investigated by characterizing the specific surface areas, pore volumes, sizes, and shapes of the fibers. According to the results of Brunauer-Emmett-Teller analysis, the activation of the CNFs using potassium hydroxide resulted in a large pore volume and specific surface area in the samples. This is attributable to the optimized pore structure of the metal-containing polyacrylonitrile-based electrospun CNFs, which may provide better sites for hydrogen adsorption than do current adsorbates.

Optimal design of hybrid laminated composite plates (혼합 적층 복합 재료판의 최적설계)

  • 이영신;이열화;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1391-1407
    • /
    • 1990
  • In this paper, optimization procedures are presented considering the static and dynamic constraints for laminated composite plate and hybrid laminated composite plate subject to concentrated load on center of the plates. Design variables for this problem are ply angle or ply thickness. Deflection, natural frequency and specific damping capacity are considered as constraints. Using a recursive linear programming method, the nonlinear optimization problems are solved. By introducing the design scaling factor, the number of iterations is reduced significantly. Composite plates could be designed optimally combined with FEM analysis under various conditions. In the optimization procedure, verification for both analysis and design of the laminated composite plates are compared with the results of the others. Various design results are presented for the laminated composite plates and hybrid laminated composite plates.

Adsorption of Chromium by Heat-treated Microporous Carbon (열처리 다공성탄소를 통한 크롬(Cr+6)흡착)

  • You, Sang-Hee;Kim, Hak-Soo;Kim, Hak-Hee
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.631-636
    • /
    • 1997
  • This study was conducted to increase the adorption capacity of microporous carbon which is widely used as an adsorbent. After increasing the adsorption capacity of microporous carbon by heat-treatment, chromium($Cr^{+6}$) solution, which is the one of hazardous heavy metals, was selectively adsorbed on microporous carbon. Optimum temperature range for the heat-treatment of microporous carbon was $340{\sim}350^{\circ}C$, and the average specific surface area was measured as $1380m^2/g$ by BET (Brunauer-Emmett-Teller) method. The weight loss was about 10 percents during the heating to optimum temperature. However, It became a qualitative adsorbent due to a larger specific surface area. Removal of chromium($Cr^{+6}$) in solution by heat-treated microporous carbon was successfully carried out.

  • PDF

Well Loss of Shallow Water in South Korea (국내 천정의 정호 수두 손실)

  • 한정상
    • Water for future
    • /
    • v.10 no.1
    • /
    • pp.20-24
    • /
    • 1977
  • 43,000 shallow water wells have been installed as a part of all weather irrigation water supply project executed during 1969 to 1970 in all over Korea penninsula in order to solve water shortage problem of farming land by developing shallow ground water reserved in unconsolidated materials. But after 3 years later it was reported that 34% of the wells were abandoned by the reasons of artificial and natural defects. 48 wells distributed uniformly in the penninsula are selected to determine their well loss constants, relation between well loss and specific capacity, and tophographic classification of the well loss on the shallow water well. The results show that average well loss consatnt and the value of $CQ^2/S_w$ is ranged from $5.95{\times}10^{-5}\;to\;3.65{\times}10^{-8}Day^2M^{-5}$ and from 35.5% to maximum 68.48% respectvely and that relation between specific capacity and well loss constant can be approximately formulated as $C=0.61S_p2.246$ However this result indicates that most wells installed in this time have too high value of well loss constant $CQ^2/S_w$ in comparison with properly deseigned well. The most favorable and producable water bearing formation among unconsolidated deposits such as sand & gravel, boulderly gravel, clayey boulderly gravel, and sand formation in Korea is sand formation deposited in center of valley.

  • PDF

Electrochemical Characteristics of LiMnO2 for Lithium Secondary Battery

  • Jin Bo;Jun Dae-Kyoo;Gu Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.76-80
    • /
    • 2006
  • Well-defined orthorhombic $LiMnO_2\;and\;LiCo_{0.1}Mn_{0.9}O_2$ were synthesized by a solid-state reaction and quenching process. X-ray diffraction (XRD) results revealed that the as-synthesized powders showed an orthorhombic phase of a space group with Pmnm. The $Li/LiMnO_2\;and\;Li/LiCo_{0.1}Mn_{0.9}O_2$ cells were constituted and cycled galvanostatically in the voltage range of 2.0-4.3 V vs. $Li/Li^+$ at a current density of $0.5\;mA\;cm^{-2}$ at room temperature and $50^{\circ}C$, respectively. The results demonstrated that the highest specific capacity of $Li/LiMnO_2$ cells at room temperature and $50^{\circ}C$ was 95 and $155\;mAh\;g^{-1}$, respectively. As for $Li/LiCo_{0.1}Mn_{0.9}O_2$ cells, the highest specific capacity at room temperature and $50^{\circ}C$ was 160 and $250\;mAh\;g^{-l}$, respectively. It could be seen that the performance of $Li/LiCo_{0.1}Mn_{0.9}O_2$ cells was better than that of $Li/LiMnO_2$ cells.

Low Temperature Sintering and Dielectrics Properties of $(Ba_{1-x}Sr_x)TiO_3$ Ceramics by Addition (첨가물에 따른 $(Ba_{0.6}Sr_{0.4})TiO_3$의 저온소결 및 유전특성)

  • Jeon, So-Hyun;Kim, In-Sung;Song, Jae-Sung;Min, Bok-Gi;Yoon, Jon-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.202-203
    • /
    • 2005
  • To recognize whether admixture affects some $(Ba_{0.6}Sr_{0.4})TiO_3$, powder in this research $Li_2CO_3$, MgO, $MnO_2$ adding each 3 wt % by Tape casting method thick film make. Sitering temperature lowered 1300$^{\circ}C$ adding $Li_2CO_3$, and density is 5.942g/$cm^3$, and specific inductive capacity increases about decuple and displayed 4000. Climbed sitering temperature 1400$^{\circ}C$ adding MgO, specific inductive capacity reduced 1/2 times. Lowered sintering temperature 1325$^{\circ}C$ low adding $MnO_2$.

  • PDF

Investigation of Narrow Pore Size Distribution on Carbon Dioxide Capture of Nanoporous Carbons

  • Meng, Long-Yue;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3749-3754
    • /
    • 2012
  • Nanoporous carbons with a high specific surface area were prepared directly from thermoplastic acrylic resin as carbon precursor and MgO powder as template by carbonization over the temperature range, $500-1000^{\circ}C$. The effect of the carbonization temperature on the pore structure and $CO_2$ adsorption capacity of the obtained porous carbon was examined. The textural properties and morphology of the porous carbon materials were analyzed by $N_2/-196^{\circ}C$ and $CO_2/0^{\circ}C$ adsorption/desorption isotherms, SEM and TEM. The $CO_2$ adsorption capacity of the prepared porous carbon was measured at $25^{\circ}C$ and 1 bar and 30 bar. The specific surface area increased from 237 to $1251m^2/g$, and the total pore volumes increased from 0.242 to $0.763cm^3/g$ with increasing the carbonization temperature. The carbonization temperature acts mainly by generating large narrow micropores and mesopores with an average pore size dependent on the level of carbonization of the MgO-templated nanoporous carbons. The results showed that the MgO-templated nanoporous carbons at $900^{\circ}C$ exhibited the best $CO_2$ adsorption value of 194 mg/g at 1 bar.

The Physicochemical and Sensory Characteristics of Bread Added with Red Ginseng Powder (홍삼 분말 첨가 식빵의 이화학적 및 관능적 특성)

  • Kim Na-Young;Kim Sung-Hwan
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.15 no.2
    • /
    • pp.200-206
    • /
    • 2005
  • This study was conducted to investigate the quality characteristics of the bread with red ginseng powder(RG). Four different powder concentration levels of 0, 3, 6, and $9\%$ were added to flour to make the bread. The appearance, pH, water holding capacity, specific volume, color, texture, and sensory properties were analyzed. pH of bread with RG had no difference according to the content of the red ginseng powder. The specific volume of the bread containing $0,\;3,\;6\%$ were bigger than that of the bread with $RG-9\%$. The water holding capacity of the bread with $RG-9\%$ was the highest. As the amounts of RG increased, L-values of the bread crumb were decreased and a- and b-values were increased. As a result of texture measuring by texture analyzer, hardness and gumminess were not affected by the addition of RG. Also, springiness, cohesiveness, and chewiness were not significantly different among the control, $RG-3\%\;and\;RG-9\%$. In sensory evaluation, color, flavor, taste and overall acceptability in the bread with $RG-9\%$ were significantly lower than the control and the other groups. On the other hand, the best result for sensory characteristics showed when red ginseng powder at $3\%$ level was added to the bread.

  • PDF