• Title/Summary/Keyword: Specific Peptide

Search Result 420, Processing Time 0.027 seconds

Induction of Peptide-specific CTL Activity and Inhibition of Tumor Growth Following Immunization with Nanoparticles Coated with Tumor Peptide-MHC-I Complexes

  • Sang-Hyun Kim;Ha-Eun Park;Seong-Un Jeong;Jun-Hyeok Moon;Young-Ran Lee;Jeong-Ki Kim;Hyunseok Kong;Chan-Su Park;Chong-Kil Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.44.1-44.15
    • /
    • 2021
  • Tumor peptides associated with MHC class I molecules or their synthetic variants have attracted great attention for their potential use as vaccines to induce tumor-specific CTLs. However, the outcome of clinical trials of peptide-based tumor vaccines has been disappointing. There are various reasons for this lack of success, such as difficulties in delivering the peptides specifically to professional Ag-presenting cells, short peptide half-life in vivo, and limited peptide immunogenicity. We report here a novel peptide vaccination strategy that efficiently induces peptide-specific CTLs. Nanoparticles (NPs) were fabricated from a biodegradable polymer, poly(D,L-lactic-co-glycolic acid), attached to H-2Kb molecules, and then the natural peptide epitopes associated with the H-2Kb molecules were exchanged with a model tumor peptide, SIINFEKL (OVA257-268). These NPs were efficiently phagocytosed by immature dendritic cells (DCs), inducing DC maturation and activation. In addition, the DCs that phagocytosed SIINFEKL-pulsed NPs potently activated SIINFEKL-H2Kb complex-specific CD8+ T cells via cross-presentation of SIINFEKL. In vivo studies showed that intravenous administration of SIINFEKL-pulsed NPs effectively generated SIINFEKL-specific CD8+ T cells in both normal and tumor-bearing mice. Furthermore, intravenous administration of SIINFEKL-pulsed NPs into EG7.OVA tumor-bearing mice almost completely inhibited the tumor growth. These results demonstrate that vaccination with polymeric NPs coated with tumor peptide-MHC-I complexes is a novel strategy for efficient induction of tumor-specific CTLs.

Therapeutic effect of a TM4SF5-specific peptide vaccine against colon cancer in a mouse model

  • Kwon, Sanghoon;Kim, Young-Eun;Park, Jeong-A;Kim, Doo-Sik;Kwon, Hyung-Joo;Lee, Younghee
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.215-220
    • /
    • 2014
  • Molecular-targeted therapy has gained attention because of its high efficacy and weak side effects. Previously, we confirmed that transmembrane 4 superfamily member 5 protein (TM4SF5) can serve as a molecular target to prevent or treat hepatocellular carcinoma (HCC). We recently extended the application of the peptide vaccine, composed of CpG-DNA, liposome complex, and TM4SF5 peptide, to prevent colon cancer in a mouse model. Here, we first implanted mice with mouse colon cancer cells and then checked therapeutic effects of the vaccine against tumor growth. Immunization with the peptide vaccine resulted in robust production of TM4SF5-specific antibodies, alleviated tumor growth, and reduced survival rate of the tumor-bearing mice. We also found that serum levels of VEGF were markedly reduced in the mice immunized with the peptide vaccine. Therefore, we suggest that the TM4SF5-specific peptide vaccine has a therapeutic effect against colon cancer in a mouse model.

Development of the Phage Displayed Peptide as an Inhibitor of MCP-1 (Monocyte Chemoattractant Protein-1)-mediated Angiogenesis

  • Jeong, Sun-Joo
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.132-134
    • /
    • 2005
  • The CC chemokine, monocyte chemoattractant protein-1 (MCP-1), plays a crucial role in the initiation of atherosclerosis and has direct effects that promote angiogenesis. To develop a specific inhibitor for MCP-1-induced angiogenesis, we performed in vitro selection employing phage display random peptide libraries. Most of the selected peptides were found to be homologous to the second extracellular loops of CCR2 and CCR3. We synthesized the peptide encoding the homologous sequences of the receptors and tested its effect on the MCP-1 induced angiogenesis. Surface Plasmon Resonance measurements demonstrated specific binding of the peptide to MCP-1 but not to the other homologous protein, MCP-3. Flow cytometry revealed that the peptide inhibited the MCP-1 binding to THP-1 monocytes. Moreover, CAM and rat aortic ring assays showed that the peptide inhibited MCP-1 induced angiogenesis. Our observations indicate that the MCP-1-binding peptide exerts its anti-angiogenic effect by interfering with the interaction between MCP-1 and its receptor.

  • PDF

Characterization and Epitope Mapping of KI-41, a Murine Monoclonal Antibody Specific for the gp41 Envelope Protein of the Human Immunodeficiency Virus-1

  • Shin, Song-Yub;Park, Jung-Hyun;Jang, So-Youn;Lee, Myung-Kyu;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.58-63
    • /
    • 1998
  • In this study, a mouse monoclonal antibody (mAb) against gp41(584-618), the immunodominant epitope protein, was generated. For this purpose, BALB/c mice were immunized with double branched multiple antigenic peptides derived from the HIV-1 gp41(584-618) sequence, and antibody-secreting hybridoma were produced by fusion of mice splenocytes with SP2/0 myeloma cells. One clone producing an antigen specific mAb, termed KI-41(isotype IgG1) was identified, whose specific reactivity against gp41(584-618) could be confirmed by ELISA and Western blot analysis. Epitope mapping revealed the recognition site of the mAb KI-41 to be located around the sequence RILAVERYLKDQQLLG, which comprises the N-terminal region within the immunized gp41(584-618) peptied. Since this mAb recognizes this specific epitope within the HIV-1 gp41 without any cross-reactivity to other immunodominant regions in the HIV-2 gp35, KI-41 will provide some alternative possibilities in further applications such as the development of indirect or competitive ELISA for specific antibody detection in HIV-1 infection or for other basic researches regarding the role and function of HIV-1 gp41.

  • PDF

Characterization of KI-24, a Novel Murine Monoclonal Antibody with Specific Reactivity for the Human Immunodeficiency Virus-1 p24 Protein

  • Shin, Song-Yub;Park, Jung-Hyun;Lee, Myung-Kyu;Jang, So-Youn;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.92-95
    • /
    • 2000
  • The HIV-1 p24(202-221) sequence ETINNEEEWDRVHPV HAGP contains a B-cell epitope with the earliest immune response and the highest antibody titer against anti-mouse sera obtained by immunization with p24 antigens. A novel mouse monoclonal antibody (mAb) was generated against the immunodominant B-cell epitope of the HIV-1 p24 capsid protein, p24(202-221). BALB/c mice were immunized with the four branched multiple antigenic peptide (MAP) containing the HIV-1p24(202-221) sequence, and antibody-secreting hybridoma were produced by fusion of mouse splenocytes with P3X63Ag8.653, mouse myeloma cells. One clone which produced the antigen-specific mAb named KI-24 (Isotype IgG1, light chain: ${\kappa}$) was identified. mAb KI-24 was highly specific for both the p24(202-221) and p24 proteins when analyzed by ELISA and Western blotting. Since p24(202-221) also contains a cytotoxic T-lymphocyte epitope, this specfic peptide epitope and the monoclonal antibody with specific reactivity against the p24 protein and p24(202-221) can be used in peptide vaccine development and p24 antigen detection from HIV patients.

  • PDF

Priming of Autoreactive $CD8^+T$ Cells Is Inhibited by Immunogenic Peptides Which Are Competitive for Major Histocompatibility Complex Class I Binding

  • You, Sooseong;Choi, Yoon Seok;Hong, Seokchan;Shin, Eui-Cheol
    • IMMUNE NETWORK
    • /
    • v.13 no.3
    • /
    • pp.86-93
    • /
    • 2013
  • In the present study, we investigated if priming of autoreactive $CD8^+T$ cells would be inhibited by competitive peptides for major histocompatibility complex (MHC) class I binding. We used a mouse model of vitiligo which is induced by immunization of $K^b$-binding tyrosinase-related protein 2 (TRP2)-180 peptide. Competitive peptides for $K^b$ binding inhibited IFN-${\gamma}$production and proliferation of TRP2-180-specific $CD8^+T$ cells upon ex vivo peptide restimulation, while other MHC class I-binding peptides did not. In mice, the capability of inhibition was influenced by T-cell immunogenicity of the competitive peptides. The competitive peptide with a high T-cell immunogenicity efficiently inhibited priming of TRP2-180-specific $CD8^+T$ cells in vivo, whereas the competitive peptide with a low T-cell immunogenicity did not. Taken together, the inhibition of priming of autoreactive $CD8^+T$ cells depends on not only competition of peptides for MHC class I binding but also competitive peptide-specific $CD8^+T$ cells, suggesting that clonal expansion of autoreactive T cells would be affected by expansion of competitive peptide-specific T cells. This result provides new insights into the development of competitive peptides-based therapy for the treatment of autoimmune diseases.

The Study of MHC class I Restricted CD8+ T Cell Mediated Immune Responses against Mycobacterium tuberculosis Infection: Evidence of M. tuberculosis S pecific CD8+ T Cells in TB Patients and PPD+ Healthy Individuals (MHC class I 분자들에 의해 제시되는 Epitope을 인지하는 CD8+ T 림프구의 결핵균 감염에 대한 면역반응의 연구: 결핵 환자와 PPD+ 건강개체에 존재하는 결핵균 항원에 특정한 CD8+ T세포)

  • Cho, Jang-Eun;Lee, Kyung Wha;Park, Seung Kyu;Cheon, Seon-Hee;Cho, Sang-Nae;Cho, Sungae
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.235-241
    • /
    • 2003
  • Background: The protective immunity against tuberculosis (TB) involves both CD4+ T cells and CD8+ T cells. In our previous study, we defined four Mycobacterium tuberculosis derived peptide epitopes specific for HLA-$A^*0201$ restricted CD8+ T cells ($ThyA_{30-38}$, $RpoB_{127-135}$, $85B_{15-23}$, $PstA1_{75-83}$). In this study, we investigated the immune responses induced by these peptide specific CD8+ T cells in latently and chronically infected people with TB. Methods: We characterized these peptide specific CD8+ T cell population present in PBMC of both TB patients and PPD+healthy people using IFN-${\gamma}$elispot assay, intracellular staining and HLA-A2 dimer staining. Results: The frequency of peptide specific CD8+ T cell was in the range of 1 to 25 in $1.7{\times}10^5$ PBMC based on ex vivo IFN-${\gamma}$ elispot assay, demonstrating that these peptide specific CD8+ T cell responses are induced in both TB patients and PPD+ people. Short term cell lines (STCL) specific for these peptides proliferated in vitro and secreted IFN-${\gamma}$ upon antigenic stimulation in PPD+ donors. Lastly, HLA-$A^*0201$ dimer assays indicated that $PstA1_{75-83}$ specific CD8+ T cell population in PPD+ healthy donors is heterogeneous since approximately 25~33% of $PstA1_{75-83}$ specific CD8+ T cell population in PPD+ healthy donors produced IFN-${\gamma}$ upon peptide stimulation. Conclusion: Our results suggest that MHC class I restricted CD8+ T cell mediated immune responses to M. tuberculosis infection are induced in both TB patients and PPD + people; however, the CD8+ T cell population is functionally heterogeneous.

Human $CD103^+$ dendritic cells promote the differentiation of Porphyromonas gingivalis heat shock protein peptide-specific regulatory T cells

  • Kim, Myung-Jin;Jeong, Eui-Kyong;Kwon, Eun-Young;Joo, Ji-Young;Lee, Ju-Youn;Choi, Jeomil
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.5
    • /
    • pp.235-241
    • /
    • 2014
  • Purpose: Regulatory T cells (Tregs), expressing CD4 and CD25 as well as Foxp3, are known to play a pivotal role in immunoregulatory function in autoimmune diseases, cancers, and graft rejection. Dendritic cells (DCs) are considered the major antigen-presenting cells (APCs) for initiating these T-cell immune responses, of which $CD103^+$ DCs are derived from precursor human peripheral blood mononuclear cells (PBMCs). The aim of the present study was to evaluate the capacity of these PBMC-derived $CD103^+$ DCs to promote the differentiation of antigen-specific Tregs. Methods: Monocyte-derived DCs were induced from $CD14^+$ monocytes from the PBMCs of 10 healthy subjects. Once the $CD103^+$ DCs were purified, the cell population was enriched by adding retinoic acid (RA). Peptide numbers 14 and 19 of Porphyromonas gingivalis heat shock protein 60 (HSP60) were synthesized to pulse $CD103^+$ DCs as a tool for presenting the peptide antigens to stimulate $CD3^+$ T cells that were isolated from human PBMC. Exogenous interleukin 2 was added as a coculture supplement. The antigen-specific T-cell lines established were phenotypically identified for their expression of CD4, CD25, or Foxp3. Results: When PBMCs were used as APCs, they demonstrated only a marginal capacity to stimulate peptide-specific Tregs, whereas $CD103^+$ DCs showed a potent antigen presenting capability to promote the peptide-specific Tregs, especially for peptide 14. RA enhanced the conversion of $CD103^+$ DCs, which paralleled the antigen-specific Treg-stimulating effect, though the differences failed to reach statistical significance. Conclusions: We demonstrated that $CD103^+$ DCs can promote antigen-specific Tregs from naive T cells, when used as APCs for an epitope peptide from P. gingivalis HSP60. RA was an effective reagent that induces mature DCs with the typical phenotypic expression of CD103 that demonstrated the functional capability to promote antigen-specific Tregs.

Generation of Anti-HLA-DR4 Specific Antibodies by Immunization of the Recombinantly Expressed Allelic Subtype-Specific Region of the $HLA-DRB1^*0405$ Molecules

  • Park, Jung-Hyun;Cho, Eun-Wie;Lee, Yun-Jung;Chung, Jin;Hahm, Kyung-Soo;Kim, Kil-Lyong
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.111-116
    • /
    • 1998
  • HLA-DR4 is the dominant allele of MHC class II genes in Koreans. In particular, the $DRB1^*0405$ subtype has been reported to be almost exclusively expressed in Far East Asians, and has also been observed to be strongly associated with rheumatoid arthritis in Koreans and the Japanese. Identification of this specific allele has been mainly performed by PCR-based methods, which is often time consuming, costly, and involves tedious procedures such as the isolation of genomic DNA, PCR, and gel electrophoresis. To develop a more convenient tool for screening vast amounts of samples as well as to generate reagents which might also be used in other applications, in this study, antibodies were produced against this specific HLA subtype. By PCR, an allelespecific region covering the ${\beta}1$ domain of $DRB1^*0405$ was amplified and recombinantly expressed in E.coli. Immunization of Lewis rats with the purified protein yielded an allele specific antiserum. Western blot analysis showed the selective detection of the HLA-DR ${\beta}-chain$. Using this antiserum, established cell lines and peripheral blood lymphocytes were analyzed on their HLA haplotype by fluorescence activated flow cytometry. These novel antibodies will provide a powerful tool in the detection and investigation of DR4 alleles.

  • PDF

Protective Effects on A2Kb Transgenic Mice That Were Immunized with Hepatitis B Virus X Antigen Peptides by the Activation of CD8+ T Cells; XEP-3 Specific CTL Responses in the in vitro Culture (B형 간염 바이러스 X 항원을 면역한 A2Kb Transgenic Mice에서 CD8+ T Cell의 활성화에 의한 X 항원 표현 재조합 Vaccinia Virus에 대한 방어 효과; in vitro 배양을 통한 XEP-3 특이적인 CTL의 반응)

  • Hwang, Yu Kyeong;Kim, Hyung-Il;Kim, Nam Kyung;Park, Jung Min;Cheong, Hong Seok
    • IMMUNE NETWORK
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2002
  • Background: Viral antigens presented on the cell surface in association with MHC class I molecules are recognized by CD8+ T cells. MHC restricted peptides are important in eliciting cellular immune responses. As peptide antigens have a weak immunigenicity, pH-sensitive liposomes were used for peptide delivery to induce effective cytotoxic T lymphocyte (CTL) responses. In the previous study, as the HBx peptides could induce specific CTLs in vitro, we tested whether the HLA-A2/$K^b$ transgenic mice that were immunized by HBx-derived peptides could be protected from a viral challenge. Methods: HBx-peptides encapsulated by pH-sensitive liposomes were prepared. $A2K^b$ transgenic mice were immunized i.m. on days one and seven with the indicated concentrations of liposome-encapsulated peptides. Three weeks later, mice were infected with $1{\times}10^7pfu$/head of recombinant vaccinia virus (rVV)-HBx via i.p. administration. The ovaries were extracted from the mice, and the presence of rVV-HBx in the ovaries was analyzed using human TK-143B cells. IFN-${\gamma}$ secretion by these cells was directly assessed using a peptide-pulsed target cell stimulation assay with either peptide-pulsed antigen presenting cells (APCs), concanavalin A ($2{\mu}g/ml$), or a vehicle. To generate peptide-specific CTLs, splenocytes obtained from the immunized mice were stimulated with $20{\mu}g/ml$ of each peptide and restimulated with peptide-pulsed APC four times. The cytotoxic activity of the CTLs was assessed by standard $^{51}Cr$-release assay and intracellular IFN-${\gamma}$ assay. Results: Immunization of these peptides as a mixture in pH-sensitive liposomes to transgenic mice induced a good protective effect from a viral challenge by inducing the peptide-specific CD8+ T cells. Mice immunized with $50{\mu}g/head$ were much better protected against viral challenge compared to those immunized with $5{\mu}g$/head, whereas the mice immunized with empty liposomes were not protected at all. After in vitro CTL culture by peptide stimulation, however, specific cytotoxicity was much higher in the CTLs from mice immunized with $5{\mu}g/head$ than $50{\mu}g/head$ group. Increase of the number of cells that intracellular IFN-${\gamma}$ secreting cell among CD8+ T cells showed similar result. Conclusion: Mice immunized with XEPs within pH-sensitive liposome were protected against viral challenge. The protective effect depended on the amount of antigen used during immunization. XEP-3-specific CTLs could be induced by peptide stimulation in vitro from splenocytes obtained from immunized mice. The cytotoxic effect of CTLs was measured by $^{51}Cr$-release assay and the percentage of accumulated intracellular IFN-${\gamma}$ secreting cells after in vitro restimulation was measured by flow cytometric analysis. The result of $^{51}Cr$-release cytotoxicity test was well correlated with that of the flow cytometric analysis. Viral protection was effective in immunized group of $50{\mu}g/head$, while in the in vitro restimulation, it showed more spectific response in $5{\mu}g$/head group.