DOI QR코드

DOI QR Code

Priming of Autoreactive $CD8^+T$ Cells Is Inhibited by Immunogenic Peptides Which Are Competitive for Major Histocompatibility Complex Class I Binding

  • You, Sooseong (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST) ;
  • Choi, Yoon Seok (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST) ;
  • Hong, Seokchan (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST) ;
  • Shin, Eui-Cheol (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST)
  • Received : 2013.04.19
  • Accepted : 2013.05.03
  • Published : 2013.06.30

Abstract

In the present study, we investigated if priming of autoreactive $CD8^+T$ cells would be inhibited by competitive peptides for major histocompatibility complex (MHC) class I binding. We used a mouse model of vitiligo which is induced by immunization of $K^b$-binding tyrosinase-related protein 2 (TRP2)-180 peptide. Competitive peptides for $K^b$ binding inhibited IFN-${\gamma}$production and proliferation of TRP2-180-specific $CD8^+T$ cells upon ex vivo peptide restimulation, while other MHC class I-binding peptides did not. In mice, the capability of inhibition was influenced by T-cell immunogenicity of the competitive peptides. The competitive peptide with a high T-cell immunogenicity efficiently inhibited priming of TRP2-180-specific $CD8^+T$ cells in vivo, whereas the competitive peptide with a low T-cell immunogenicity did not. Taken together, the inhibition of priming of autoreactive $CD8^+T$ cells depends on not only competition of peptides for MHC class I binding but also competitive peptide-specific $CD8^+T$ cells, suggesting that clonal expansion of autoreactive T cells would be affected by expansion of competitive peptide-specific T cells. This result provides new insights into the development of competitive peptides-based therapy for the treatment of autoimmune diseases.

Keywords

References

  1. Cooper, G. S., M. L. Bynum, and E. C. Somers. 2009. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 33: 197-207. https://doi.org/10.1016/j.jaut.2009.09.008
  2. Lee, E. and A. A. Sinha. 2005. T cell targeted immunotherapy for autoimmune disease. Autoimmunity 38: 577-596. https://doi.org/10.1080/08916930500418136
  3. Bjorkman, P. J., M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger, and D. C. Wiley. 1987. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506-512. https://doi.org/10.1038/329506a0
  4. Bjorkman, P. J., M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger, and D. C. Wiley. 1987. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329: 512-518. https://doi.org/10.1038/329512a0
  5. Babbitt, B. P., G. Matsueda, E. Haber, E. R. Unanue, and P. M. Allen. 1986. Antigenic competition at the level of peptide- Ia binding. Proc. Natl. Acad. Sci. U. S. A. 83: 4509-4513. https://doi.org/10.1073/pnas.83.12.4509
  6. Adorini, L., S. Muller, F. Cardinaux, P. V. Lehmann, F. Falcioni, and Z. A. Nagy. 1988. In vivo competition between self peptides and foreign antigens in T-cell activation. Nature 334: 623-625. https://doi.org/10.1038/334623a0
  7. You, S., Y. H. Cho, J. S. Byun, and E. C. Shin. 2013. Melanocyte-specific CD8+ T cells are associated with epidermal depigmentation in a novel mouse model of vitiligo. Clin. Exp. Immunol. [Epub ahead of print]
  8. Porgador, A., J. W. Yewdell, Y. Deng, J. R. Bennink, and R. N. Germain. 1997. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6: 715-726. https://doi.org/10.1016/S1074-7613(00)80447-1
  9. Bloom, M. B., D. Perry-Lalley, P. F. Robbins, Y. Li, M. el-Gamil, S. A. Rosenberg, and J. C. Yang. 1997. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J. Exp. Med. 185: 453-459. https://doi.org/10.1084/jem.185.3.453
  10. Kim, S. K., M. Cornberg, X. Z. Wang, H. D. Chen, L. K. Selin, and R. M. Welsh. 2005. Private specificities of CD8 T cell responses control patterns of heterologous immunity. J. Exp. Med. 201: 523-533. https://doi.org/10.1084/jem.20041337
  11. Karunakaran, K. P., J. Rey-Ladino, N. Stoynov, K. Berg, C. Shen, X. Jiang, B. R. Gabel, H. Yu, L. J. Foster, and R. C. Brunham. 2008. Immunoproteomic discovery of novel T cell antigens from the obligate intracellular pathogen Chlamydia. J. Immunol. 180: 2459-2465. https://doi.org/10.4049/jimmunol.180.4.2459
  12. Trobaugh, D. W., L. Yang, F. A. Ennis, and S. Green. 2010. Altered effector functions of virus-specific and virus cross-reactive CD8+ T cells in mice immunized with related flaviviruses. Eur. J. Immunol. 40: 1315-1327. https://doi.org/10.1002/eji.200839108
  13. Clute, S. C., L. B. Watkin, M. Cornberg, Y. N. Naumov, J. L. Sullivan, K. Luzuriaga, R. M. Welsh, and L. K. Selin. 2005. Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus-associated infectious mononucleosis. J. Clin. Invest. 115: 3602-3612. https://doi.org/10.1172/JCI25078
  14. Yewdell, J. W. and J. R. Bennink. 1999. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17: 51-88. https://doi.org/10.1146/annurev.immunol.17.1.51
  15. Savir, Y., N. Waysbort, Y. E. Antebi, T. Tlusty, and N. Friedman. 2012. Balancing speed and accuracy of polyclonal T cell activation: a role for extracellular feedback. BMC Syst. Biol. 6: 111. https://doi.org/10.1186/1752-0509-6-111
  16. Curtsinger, J. M., D. C. Lins, and M. F. Mescher. 1998. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C-) to TCR/CD8 signaling in response to antigen. J. Immunol. 160: 3236-3243.
  17. Veiga-Fernandes, H., U. Walter, C. Bourgeois, A. McLean, and B. Rocha. 2000. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol. 1: 47-53. https://doi.org/10.1038/76907
  18. Reed, C., J. M. Katz, K. Hancock, A. Balish, and A. M. Fry; H1N1 Serosurvey Working Group. 2012. Prevalence of seropositivity to pandemic influenza A/H1N1 virus in the United States following the 2009 pandemic. PLoS One 7: e48187. https://doi.org/10.1371/journal.pone.0048187
  19. Cannon, M. J., D. S. Schmid, and T. B. Hyde. 2010. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 20: 202-213. https://doi.org/10.1002/rmv.655