Browse > Article
http://dx.doi.org/10.4110/in.2013.13.3.86

Priming of Autoreactive $CD8^+T$ Cells Is Inhibited by Immunogenic Peptides Which Are Competitive for Major Histocompatibility Complex Class I Binding  

You, Sooseong (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST)
Choi, Yoon Seok (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST)
Hong, Seokchan (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST)
Shin, Eui-Cheol (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST)
Publication Information
IMMUNE NETWORK / v.13, no.3, 2013 , pp. 86-93 More about this Journal
Abstract
In the present study, we investigated if priming of autoreactive $CD8^+T$ cells would be inhibited by competitive peptides for major histocompatibility complex (MHC) class I binding. We used a mouse model of vitiligo which is induced by immunization of $K^b$-binding tyrosinase-related protein 2 (TRP2)-180 peptide. Competitive peptides for $K^b$ binding inhibited IFN-${\gamma}$production and proliferation of TRP2-180-specific $CD8^+T$ cells upon ex vivo peptide restimulation, while other MHC class I-binding peptides did not. In mice, the capability of inhibition was influenced by T-cell immunogenicity of the competitive peptides. The competitive peptide with a high T-cell immunogenicity efficiently inhibited priming of TRP2-180-specific $CD8^+T$ cells in vivo, whereas the competitive peptide with a low T-cell immunogenicity did not. Taken together, the inhibition of priming of autoreactive $CD8^+T$ cells depends on not only competition of peptides for MHC class I binding but also competitive peptide-specific $CD8^+T$ cells, suggesting that clonal expansion of autoreactive T cells would be affected by expansion of competitive peptide-specific T cells. This result provides new insights into the development of competitive peptides-based therapy for the treatment of autoimmune diseases.
Keywords
Autoimmune disease; Autoreactive $CD8^+T$ cell; Competitive peptide; Major histocompatibility complex class I;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cooper, G. S., M. L. Bynum, and E. C. Somers. 2009. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 33: 197-207.   DOI
2 Lee, E. and A. A. Sinha. 2005. T cell targeted immunotherapy for autoimmune disease. Autoimmunity 38: 577-596.   DOI
3 Bjorkman, P. J., M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger, and D. C. Wiley. 1987. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506-512.   DOI
4 Bjorkman, P. J., M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger, and D. C. Wiley. 1987. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329: 512-518.   DOI
5 Babbitt, B. P., G. Matsueda, E. Haber, E. R. Unanue, and P. M. Allen. 1986. Antigenic competition at the level of peptide- Ia binding. Proc. Natl. Acad. Sci. U. S. A. 83: 4509-4513.   DOI
6 Adorini, L., S. Muller, F. Cardinaux, P. V. Lehmann, F. Falcioni, and Z. A. Nagy. 1988. In vivo competition between self peptides and foreign antigens in T-cell activation. Nature 334: 623-625.   DOI
7 You, S., Y. H. Cho, J. S. Byun, and E. C. Shin. 2013. Melanocyte-specific CD8+ T cells are associated with epidermal depigmentation in a novel mouse model of vitiligo. Clin. Exp. Immunol. [Epub ahead of print]
8 Porgador, A., J. W. Yewdell, Y. Deng, J. R. Bennink, and R. N. Germain. 1997. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6: 715-726.   DOI
9 Bloom, M. B., D. Perry-Lalley, P. F. Robbins, Y. Li, M. el-Gamil, S. A. Rosenberg, and J. C. Yang. 1997. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J. Exp. Med. 185: 453-459.   DOI
10 Kim, S. K., M. Cornberg, X. Z. Wang, H. D. Chen, L. K. Selin, and R. M. Welsh. 2005. Private specificities of CD8 T cell responses control patterns of heterologous immunity. J. Exp. Med. 201: 523-533.   DOI
11 Karunakaran, K. P., J. Rey-Ladino, N. Stoynov, K. Berg, C. Shen, X. Jiang, B. R. Gabel, H. Yu, L. J. Foster, and R. C. Brunham. 2008. Immunoproteomic discovery of novel T cell antigens from the obligate intracellular pathogen Chlamydia. J. Immunol. 180: 2459-2465.   DOI
12 Trobaugh, D. W., L. Yang, F. A. Ennis, and S. Green. 2010. Altered effector functions of virus-specific and virus cross-reactive CD8+ T cells in mice immunized with related flaviviruses. Eur. J. Immunol. 40: 1315-1327.   DOI
13 Clute, S. C., L. B. Watkin, M. Cornberg, Y. N. Naumov, J. L. Sullivan, K. Luzuriaga, R. M. Welsh, and L. K. Selin. 2005. Cross-reactive influenza virus-specific CD8+ T cells contribute to lymphoproliferation in Epstein-Barr virus-associated infectious mononucleosis. J. Clin. Invest. 115: 3602-3612.   DOI
14 Yewdell, J. W. and J. R. Bennink. 1999. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17: 51-88.   DOI
15 Reed, C., J. M. Katz, K. Hancock, A. Balish, and A. M. Fry; H1N1 Serosurvey Working Group. 2012. Prevalence of seropositivity to pandemic influenza A/H1N1 virus in the United States following the 2009 pandemic. PLoS One 7: e48187.   DOI
16 Savir, Y., N. Waysbort, Y. E. Antebi, T. Tlusty, and N. Friedman. 2012. Balancing speed and accuracy of polyclonal T cell activation: a role for extracellular feedback. BMC Syst. Biol. 6: 111.   DOI
17 Curtsinger, J. M., D. C. Lins, and M. F. Mescher. 1998. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C-) to TCR/CD8 signaling in response to antigen. J. Immunol. 160: 3236-3243.
18 Veiga-Fernandes, H., U. Walter, C. Bourgeois, A. McLean, and B. Rocha. 2000. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol. 1: 47-53.   DOI
19 Cannon, M. J., D. S. Schmid, and T. B. Hyde. 2010. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 20: 202-213.   DOI