• 제목/요약/키워드: Species distribution modeling

검색결과 75건 처리시간 0.023초

통계모형을 활용한 박새류의 서식지 연결성 평가: 서울시 도시생태현황도 자료를 중심으로 (Habitat Connectivity Assessment of Tits Using a Statistical Modeling: Focused on Biotop Map of Seoul, South Korea)

  • 송원경;김은영;이동근
    • 환경영향평가
    • /
    • 제22권3호
    • /
    • pp.219-230
    • /
    • 2013
  • Species distribution modeling is one of the most effective habitat analysis methods for wildlife conservation. This study was for evaluating the suitability of species distribution to distance between forest patches in Seoul city using tits. We analyzed the distribution of the four species of tits: varied tit (Parus varius), marsh tit (P. palustris), great tit (P. major) and coal tit (P. ater), using the landscape indexes and connectivity indexes, and compared the resulting suitability indexes from 100m to 1,000m. As factors affecting to the distribution of tits, we calculated landscape indices by separating them into intra-patch indices (i.e. logged patch area (PA), area-weighted mean patch shape index (PSI), tree rate (TR)) and inter-patch indices (i.e. patch degree (PD), patch betweenness (PB), difference probability of connectivity (DPC)), to analyze the internal properties of the patches and their connectivity by tits occurrence data using logistic regression modeling. The models were evaluated by AICc (Akaike Information Criteria with a correction for finite sample sizes) and AUC (Area Under Curve of ROC). The results of AICc and AUC showed DPC, PA, PSI, and TR were important factors of the habitat models for great tit and marsh tit at the level of distance 500~800m. In contrast, habitat models for coal tit and varied tit, which are known as forest interior species, reflected PA, PSI, and TR as intra-patch indices rather than connectivity. These mean that coal tit and varied tit are more likely to find a large circular forest patch than a small and long-shaped forest patch, which are higher rate of forest. Therefore, different strategies are required in order to enhance the habitats of the forest birds, tits, in a region that has fragmented forest patches such as Seoul city. It is important to manage forest interior areas for coal tit and varied tit, which are known as forest interior species and to manage not only forest interior areas but also connectivity of the forest patches in the threshold distance for great tit and marsh tit as adapted species to the urban ecosystem for sustainable ecosystem management.

생태계 서비스 가치평가를 위한 멸종위기 포유류의 종분포 연구 - 전국자연환경조사 자료를 중심으로 - (Species Distribution Modeling of Endangered Mammals for Ecosystem Services Valuation - Focused on National Ecosystem Survey Data -)

  • 전성우;김재욱;정휘철;이우균;김준순
    • 한국환경복원기술학회지
    • /
    • 제17권1호
    • /
    • pp.111-122
    • /
    • 2014
  • The provided habitat of many services from natural capital is important. But because most ecosystem services tools qualitatively evaluated biodiversity or habitat quality, this study quantitatively analyzed those aspects using the species distribution model (MaxEnt). This study used location point data of the goat(Naemorhedus caudatus), marten(Martes flavigula), leopard cat(Prionailurus bengalensis), flying squirrel(Pteromys volans aluco) and otter(Lutra lutra) from the 3rd National Ecosystem Survey. Input data utilized DEM, landcover classification maps, Forest-types map and digital topographic maps. This study generated the MaxEnt model, randomly setting 70% of the presences as training data, with the remaining 30% used as test data, and ran five cross-validated replicates for each model. The threshold indicating maximum training sensitivity plus specificity was considered as a more robust approach, so this study used it to conduct the distribution into presence(1)-absence(0) predictions and totalled up a value of 5 times for uncertainty reduction. The test data's ROC curve of endangered mammals was as follows: growing down goat(0.896), otter(0.857), flying squirrel(0.738), marten(0.725), and leopard cat(0.629). This study was divided into two groups based on habitat: the first group consisted of the goat, marten, leopard cat and flying squirrel in the forest; and the second group consisted of the otter in the river. More than 60 percent of endangered mammals' distribution probability were 56.9% in the forest and 12.7% in the river. A future study is needed to conduct other species' distribution modeling exclusive of mammals and to develop a collection method of field survey data.

소나무의 지리적 분포 및 생태적 지위 모형을 이용한 기후변화 영향 예측 (Assessing the Effects of Climate Change on the Geographic Distribution of Pinus densiflora in Korea using Ecological Niche Model)

  • 천정화;이창배
    • 한국농림기상학회지
    • /
    • 제15권4호
    • /
    • pp.219-233
    • /
    • 2013
  • 본 연구는 산림에서 나타나는 수종의 분포 패턴을 해석하고 예측하기 위한 목적으로 수행되었다. 국내에서 처음으로 시도된 전국 규모의 체계적 산림조사라 할 수 있는 NFI (National Forest Inventory)의 수종별 출현 정보와 출현지점별 풍부도를 기반으로 소나무의 현존분포도를 작성하였다. 생태적 지위 모형의 하나인 GARP (Genetic Algorithm for Ruleset Production)를 이용하여 소나무 현존분포와 연관성이 높은 환경요인변수들을 선정하였고, 선정된 변수들을 설명변수로 하는 소나무 잠재분포 모형을 작성한 후 기후변화 시나리오를 적용하여 미래의 잠재분포를 예측하였다. 기후, 지리 지형, 토양 지질, 토지이용 및 식생현황 등 27개 환경요인변수를 각각 설명변수로 하여 모형을 구동함으로써 소나무 현존분포와의 연관성을 평가한 결과 1월 평균기온이 최상위를 차지하였고 연평균기온, 8월평균기온, 연교차 등도 영향을 미치는 것으로 분석되었다. NFI 정보로부터 추출하여 소스개체군으로 선정된 조사지점들을 소나무의 최종출현정보로, 환경요인변수 간의 연관성 분석을 통해 최종적으로 선정된 변수 세트를 설명변수로 하여 모형을 구동함으로써 최적의 모형을 선정한 후 잠재분포도를 작성하였다. 현재 시점의 환경요인변수들에 의해 트레이닝 된 잠재분포 모형에서 기후관련변수들을 RCP 8.5 기후변화시나리오에서 산출한 변수들로 대체하여 2020년대, 2050년대, 2090년대의 소나무의 예측 잠재분포도를 작성하였다. 최종적으로 작성된 소나무 잠재분포모형의 평가 통계량인 AUC (Area Under Curve)는 0.67로 다소 미흡하였으나 향후 기후변화 환경 하에서 소나무림의 보전 및 관리를 위한 최소한의 실마리를 제공할 수 있을 것으로 판단되었다.

Tree species migration to north and expansion in their habitat under future climate: an analysis of eight tree species Khyber Pakhtunkhwa, Pakistan

  • Muhammad Abdullah Durrani;Rohma Raza;Muhammad Shakil;Shakeel Sabir;Muhammad Danish
    • Journal of Ecology and Environment
    • /
    • 제48권1호
    • /
    • pp.96-109
    • /
    • 2024
  • Background: Khyber Pakhtunkhwa government initiated the Billion Tree Tsunami Afforestation Project including regeneration and afforestation approaches. An effort was made to assess the distribution characteristics of afforested species under present and future climatic scenarios using ecological niche modelling. For sustainable forest management, landscape ecology can play a significant role. A significant change in the potential distribution of tree species is expected globally with changing climate. Ecological niche modeling provides the valuable information about the current and future distribution of species that can play crucial role in deciding the potential sites for afforestation which can be used by government institutes for afforestation programs. In this context, the potential distribution of 8 tree species, Cedrus deodara, Dalbergia sissoo, Juglans regia, Pinus wallichiana, Eucalyptus camaldulensis, Senegalia modesta, Populus ciliata, and Vachellia nilotica was modeled. Results: Maxent species distribution model was used to predict current and future distribution of tree species using bioclimatic variables along with soil type and elevation. Future climate scenarios, shared socio-economic pathways (SSP)2-4.5 and SSP5-8.5 were considered for the years 2041-2060 and 2081-2100. The model predicted high risk of decreasing potential distribution under SSP2-4.5 and SSP5-8.5 climate change scenarios for years 2041-2060 and 2081-2100, respectively. Recent afforestation conservation sites of these 8 tree species do not fall within their predicted potential habitat for SSP2-4.5 and SSP5-8.5 climate scenarios. Conclusions: Each tree species responded independently in terms of its potential habitat to future climatic conditions. Cedrus deodara and P. ciliata are predicted to migrate to higher altitude towards north in present and future climate scenarios. Habitat of D. sissoo, P. wallichiana, J. regia, and V. nilotica is practiced to be declined in future climate scenarios. Eucalyptus camaldulensis is expected to be expanded its suitability area in future with eastward shift. Senegalia modesta habitat increased in the middle of the century but decreased afterwards in later half of the century. The changing and shifting forests create challenges for sustainable landscapes. Therefore, the study is an attempt to provide management tools for monitoring the climate change-driven shifting of forest landscapes.

Habitat Suitability Modeling of Endangered Cyathea spinulosa (Wall. ex Hook.) in Central Nepal

  • Padam Bahadur Budha;Kumod Lekhak;Subin Kalu;Ichchha Thapa
    • Journal of Forest and Environmental Science
    • /
    • 제39권2호
    • /
    • pp.65-72
    • /
    • 2023
  • The endangered species of Cyathea spinulosa (tree ferns) are among the least concerned ferns of Nepal that bring threats to them and their habitat. A way to reduce such threats is by maintaining a database of species' whereabouts and generating a scientific understanding the habitat preferences. This will eventually help in the formulation of conservation plans for the species. This research aimed to characterize the suitable habitat of C. spinulosa by enumerating the location of species in the Panchase Forests of central Nepal. The statistical index method was applied to relate the occurrence locations of species with various environmental factors for the development of indices. The suitable habitat of C. spinulosa (more and most suitable categories) covered 119 km2 and accounted for 43% of the total area studied. 74.4% of occurrence locations of C. spinulosa were recorded from these habitats. The habitat characteristics suitable for C. spinulosa were: proximity to streams (high moisture), land covered by forested area (shady area), mid-elevations of hills about 1,000 m to 2,000 m (sub-tropical climate), slope gradient of 20° to 40° (steep slopes), and northern to eastern aspects. These habitat characteristics could be considered for in-situ protection of tree ferns and designating the conservation plots.

Predictive Distribution Modelling of Calamus andamanicus Kurz, an Endemic Rattan from Andaman and Nicobar Islands, India

  • Sreekumar, V.B.;Suganthasakthivel, R.;Sreejith, K.A.;Sanil, M.S.
    • Journal of Forest and Environmental Science
    • /
    • 제32권1호
    • /
    • pp.94-98
    • /
    • 2016
  • Calamus andamanicus Kurz is one of the commercially important solitary rattans endemic to Andaman and Nicobar islands. The habitat suitability modeling program, MaxEnt, was used to predict the potential ecological niches of this species, based on bioclimatic variables. The study revealed high potential distribution of C. andamanicus across both Andaman and Nicobar islands. Of the 33 spatially unique points, 21 points were recorded from South and North Andamans and 12 from Great Nicobar Islands. The islands like Little Andaman, North Sentinel, Little Nicobar, Tllangchong, Teressa were also predicted positive even though this rattan is not recorded from these islands. Mean diurnal range, higher precipitation in the wettest month of the year, annual precipitation and precipitation in the driest month are the main predictors of this species distribution.

종분포모형을 이용한 수원청개구리의 번식기 서식지 분석 (Habitat Analysis of Hyla suweonensis in the Breeding Season Using Species Distribution Modeling)

  • 송원경
    • 한국환경복원기술학회지
    • /
    • 제18권1호
    • /
    • pp.71-82
    • /
    • 2015
  • Hyla suweonensis is an endemic species and is designated as the only endangered species I among amphibians in 2012 by the Ministry of Environment, however studies about its habitat are lacking. This study was carried out to analyze habitat of H. suweonensis based on the spatial information using Maxent (Maximum entropy model as a species distribution model. We detected 45 present points until 2013 and 10 environmental variables by literature review for the model. The results showed that $429km^2$ (0.95%) of the study area, which was about 7.75% of the total agricultural area, was high possible habitats of H. suweonensis. The habitat of H. suweonensis was analyzed by over $1km^2$ rice paddy fields that were lower elevations, flat slopes, and not fragmented. The distance from forests and rivers was identified as a factor that affects its habitat possibilities. In order to conserve H. suweonensis, a large area of rice paddy fields should be preserved, and especially the area around forests and rivers would be required more intensive management. In addition, to compensate for degraded habitats of H. suweonensis in urban areas like as Suwon city, considering integrated watershed management strategy could be effective in the perspective of ecological habitat network of H. suweonensis.

식생 베타 다양성의 공간화 기법 연구 - Generalized Dissimilarity Model의 국내적용 및 활용 - (Spatializing beta-diversity of vascular plants - Application of Generalized Dissimilarity Model in the Republic of Korea -)

  • 최유영
    • 한국환경복원기술학회지
    • /
    • 제25권3호
    • /
    • pp.29-45
    • /
    • 2022
  • For biodiversity conservation, the importance of beta-diversity which is changes in the composition of species according to environmental changes has become emphasized. However, given the systematic investigation of species distribution and the accumulation of large amounts of data in the Republic of Korea(ROK), research on the spatialization of beta-diversity using them is insufficient. Accordingly, this research investigated the applicability of the Generalized Dissimilarity Modeling(GDM) to ROK, which can predict and map the similarity of compositional turnover (beta-diversity) based on environmental variables. A brief overview of the statistical description on using GDM was presented, and a model was fitted using the flora distribution data(410,621points) from the National Ecosystem Survey and various environmental spatial data including climate, soil, topography, and land cover. Procedures and appropriated spatial units required to improve the explanatory power of the model were presented. As a result, it was found that geographical distance, temperature annual range, summer temperature, winter precipitation, and soil factors affect the dissimilarity of the vegetation community composition. In addition, as a result of predicting the similarity of vegetation composition across the nation, and classifying them into 20 and 100 zones, the similarity was high mainly in the central inland area, and tends to decrease toward the mountainous areas, southern coastal regions, and island including Jeju island, which means the composition of the vegetation community is unique and beta diversity is high. In addition, it was identified that the number of common species between zones decreased as the geographic distance between zones increased. It classified the spatial distribution of plant community composition in a quantitative and objective way, but additional research and verification are needed for practical application. It is expected that research on community-level biodiversity modeling in the ROK will be conducted more actively based on this study.

HSI와 MaxEnt를 통한 삵의 서식지 예측 모델 비교 연구 (A Comparative Study on HSI and MaxEnt Habitat Prediction Models: About Prionailurus bengalensis)

  • 유다영;임태양;김휘문;송원경
    • 한국환경복원기술학회지
    • /
    • 제24권5호
    • /
    • pp.1-14
    • /
    • 2021
  • Excessive development and urbanization have destroyed animal, plant, habitats and reduced biodiversity. In order to preserve species diversity, habitat prediction studies are have been conducted at home and overseas using various modeling techniques. This study was conducted to suggest optimal habitat modeling research by comparing HSI and MaxEnt, which are widely used among habitat modeling techniques. The study was targeted on the endangered species of Prionailurus bengalensis in nearby areas (5460.35km2) including Cheonan City, and the same data were used for analysis to compare those models. According to the HSI analysis, Prionailurus bengalensis's habitat probability was 74.65% for less than 0.5 and 25.34% for more than 0.5 and the top 30% were forest (99.07%). MaxEnt's analysis showed that 56.22% of those below 0.5 and 43.79% of those above 0.5 were found to have a high explanatory power of 78.3% of AUC. The Paired Wilcoxn test, which evaluated the significance of thoes models, confirmed that the mean difference between the two models was statistically significant (p<0.05). Analysis of the differences in the results of those models using the matrix table shows that score 24.43% HSI and MaxEnt was accordance,12.44% of the 0.0 to 0.2 section, 7.22% of the 0.2 to 0.4 section, 2.73% of the 0.4 to 0.6 section, 1.96% of the 0.6 to 0.8, and 0.08% of the 0.9 to 1.0. To verify where the score difference appears, the result values of those models were reset to values from 1 to 5 and overlaid. Overlapping analysis resulted in 30.26% of the Strongly agree values, 56.77% of the agree values, and 11.92% of the Disagree values. The places where the difference in scores occurs were analyzed in the order of forest (45.23%), agricultural land (34.57%), and urbanization area (7.65%). This confirmed that the analysis of the same target species within the same target site also has differences in forecasts depending on the modelling method. Therefore, a novel analysis method combining the advantages of each modeling in habitat prediction studies should be developed, and future study may be used to select Prionailurus bengalensis and species-protected areas and species protection areas in the future. Further research is judged to require higher accuracy studies through the use of various modeling techniques and on-site verification.

Changes in Aporia crataegi's potential habitats in accordance with climate changes in the northeast Asia

  • Kim, Tae Geun;Han, Yong-Gu;Kwon, Ohseok;Cho, Youngho
    • Journal of Ecology and Environment
    • /
    • 제38권1호
    • /
    • pp.15-23
    • /
    • 2015
  • This study was conducted in an effort to provide important clues pertaining to the conservation and restoration of Aporia crataegi by identifying the spatial distribution characteristics of the current habitats, prospective habitats, and future habitats of A. crataegi in accordance with climate changes. To determine the distribution of A. crataegi, data from a total of 36 collecting points throughout South Korea, North Korea, China, Japan, Mongolia, and Russia are used. The spatial distributions of the data were examined through MaxEnt modeling. The distribution probability rates exceeded 75% at 18 locations among the 36 species occurrence locations, with Gangwon province showing the highest distribution probability in South Korea. The precision of the MaxEnt model was remarkably high, with an AUC value of 0.982. The variables that affect the potential distribution of A. crataegi by more than 10% are the degree of temperature seasonality, the amount of precipitation in the warmest quarter, the annual mean temperature, and the amount of precipitation in the driest month, in that order of importance. It was found that the future potential distribution area of A. crataegi continuously moves northward over time up to 2070s. In addition, the area of the potential distribution showing a habitable probability rate that exceeds 75% in northeast Asia was $28,492km^2$, where the area of potential distribution in the north part of Korean peninsula was $20.404km^2$ in size. Thus, it is anticipated that the most important future habitats of A. crataegi in the northeast Asia will be North and South Hamgyeong provinces and Ryanggang province near Mt. Baekdoosan in the northern area of the Korean peninsula.