• Title/Summary/Keyword: Species detection

Search Result 946, Processing Time 0.028 seconds

High sensitivity biosensor for mycotoxin detection based on conducting polymer supported electrochemically polymerized biopolymers

  • Dhayal, Marshal;Park, Gye-Choon;Park, Kyung-Hee;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.243.1-243.1
    • /
    • 2010
  • Devices based on nanomaterials platforms are emerging as a powerful tool for ultrasensitive sensors for the direct detection of biological and chemical species. In this talk, we will report the preparation and the full characterization of electrochemical polymerization of biopolymers platforms and nano-structure formation for electrochemical detection of enzymatic activity and toxic compound in electrolyte for biosensor applications. Formation of an electroactive polymer film of two different compounds has been quantified by observing new redox peak at higher potentials in cyclic voltammogram measurements. RCT value of at various biopolymer concentration based hybrid films has been obtained from electrochemical impedance spectroscopy analysis and possible mechanism for formation of complexes during electrochemical polymerization on conducting substrates has been investigated. Biosensors developed based on these hybrid biopolymers have very high sensitivity.

  • PDF

A Novel Marker for the Species-Specific Detection and Quantitation of Shigella sonnei by Targeting a Methylase Gene

  • Cho, Min Seok;Ahn, Tae-Young;Joh, Kiseong;Kwon, Oh-Sang;Jheong, Won-Hwa;Park, Dong Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1113-1117
    • /
    • 2012
  • Shigella sonnei is a causal agent of fever, nausea, stomach cramps, vomiting, and diarrheal disease. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the specific detection of S. sonnei using a primer pair based on the methylase gene for the amplification of a 325 bp DNA fragment. The qPCR primer set for the accurate diagnosis of Shigella sonnei was developed from publically available genome sequences. This quantitative PCR-based method will potentially simplify and facilitate the diagnosis of this pathogen and guide disease management.

Soft Ionization of Metallo-Mefenamic Using Electrospray Ionization Mass Spectrometry

  • Abdelhamid, Hani Nasser;Wu, Hui-Fen
    • Mass Spectrometry Letters
    • /
    • v.6 no.2
    • /
    • pp.43-47
    • /
    • 2015
  • Detection of mefenamic acid (M, non-steroidal anti-inflammatory drug, NSAIDs) and its metallodrug was investigated using electrospray ionization mass spectrometry (ESI-MS) and fluorescence spectroscopy. ESI-MS data (500 µL, 1×10-3 M) revealed high detection sensitivity for the drug and metallodrug. ESI-MS spectra revealed peaks at 242, 580, and 777 Da corresponding to [M+H]+, [63Cu(M-H)2(H2O)2+H]+, and [56Fe(M-H)3+H]+, respectively. The metal:mefenamic ratios of ESIMS spectra are in complete agreement with the fluorescence spectroscopy results (1:2 for Cu(II) and 1:3 for Fe(III)). ESI is a soft ionization technique that can be used on labile metallo-mefenamic acids and is promising for the detection of these species in environmental samples and biological fluids.

Specific and Sensitive Detection of the Pear Scab Fungus Venturia nashicola by SYBR Green Real-Time PCR

  • Yun, Yeo Hong;Yoon, Seong Kwon;Jung, Jae Sung;Kim, Seong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1782-1786
    • /
    • 2015
  • A new improved PCR method has been developed for the rapid, reliable, and sensitive detection of Venturia nashicola, a destructive pathogen of scab disease in Japanese pear. The translation elongation factor-1 alpha gene-derived PCR primers specifically amplified a 257-bp-sized DNA band of the target gene from the genomic DNA of V. nashicola. No amplicon was produced from the genomic DNA of other Venturia spp. and reference fungal species tested. With the high detection limit of 10 fg DNA content, our real-time method could be used for the quarantine inspection and field monitoring of V. nashicola.

Rapid Detection of Virulence Factors of Aeromonas Isolated from a Trout Farm by Hexaplex-PCR

  • Nam, In-Young;Joh, Ki-Seong
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.297-304
    • /
    • 2007
  • The detection of virulence factors of Aeromonas is a key component in determining potential pathogenicity because these factors act multifunctionally and multifactorially. In this study water samples were collected from a trout farm on a seasonal basis, and diseased fish and Aeromonas species were isolated and identified. For rapid detection of six virulence factors of isolated Aeromonas, a hexaplex-polymerase chain reaction (hexaplex-PCR) assay was used. The detected virulence factors include aerolysin (aer), GCAT (gcat), serine protease (ser), nuclease (nuc) lipase (lip) and lateral flagella (laf). The dominant strain found in our isolates was Aeromonas sobria, and the dominant virulence factors were aer and nuc for all seasons. We confirmed that A. sobria and two of the virulence genes (aer and nuc) are related. We proposed a method by which one can identify the major strains of Aeromonas: A. hydrophila, A. sobria, A. caviae, and A. veronii, using hexaplex-PCR.

A Study on Passive Fish Finder in the Fishing Grounds near the Korean Peninsula - The Theoretical Study for Passive Fish Finder - (한국주변 어장에서의 수동어탐에 관한 연구 ( I ) - 이론적 고찰 -)

  • Kim, Sung-Boo;Chang, Jee-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.6-10
    • /
    • 1986
  • The feasibility of passive detection of fishes which had been caught in the fishing grounds near the Korean peninsula was theoretically investigated. Considering the commercial importance and the acoustical informations readily identified, although many species of fish make noise, Croaker is clarified to be a representative fish for passive fish detection. Assuming a source level of the sound produced by croakers is given as 150-18OdB (re 1l'pa, 500 Hz bandwidth), The range detected by a passive line array sonar is estimated to be about 3-20km. In addition, the tonal noise (700~800Hz) made by croaker that is easily separated from underwater noise is expected to increase the ability to discriminate from the other species of fish.

  • PDF

Detection and Identification of Vibrio Species Using Whole-Cell Protein Pattern Analysis

  • Lee, Chae-Yoon;Hong, Yeun;Ryu, Jio;Kim, Young-Rok;Oh, Sang-Suk;Lee, Soon-Ho;Hwang, In-Gyun;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1107-1112
    • /
    • 2012
  • Outbreaks of foodborne diseases associated with Vibrio species such as V. parahaemolyticus, V. vulnificus, and V. cholerae frequently occur in countries having a dietary habit of raw seafood consumption. For rapid identification of different Vibrio species involved in foodborne diseases, whole-cell protein pattern analysis for 13 type strains of 12 Vibrio species was performed using SDS-PAGE analysis. Pathogenic Vibrio species such as V. parahaemolyticus, V. vulnificus, V. cholerae, V. alginolyticus, V. fluvialis, and V. mimicus were included in the 12 Vibrio species used in this study. Each of the 12 Vibrio species showed clearly specific band patterns of its own. Two different strains of V. parahaemolyticus showed two different SDS-PAGE whole-cell protein patterns, giving the possibility of categorizing isolated strains in the same V. parahaemolyticus species into two subgroups. The 36 Vibrio isolates collected from sushi restaurants in Busan were all identified as V. parahaemolyticus by comparing their protein patterns with those of Vibrio type strains. The identified isolates were categorized into two different subgroups of V. parahaemolyticus. The whole-cell protein pattern analysis by SDS-PAGE can be used as a specific, rapid, and simple identification method for Vibrio spp. involved in foodborne diseases at the subspecies level.

Detection of Meat Origin (Species) Using Polymerase Chain Reaction

  • Park, Yong Hyun;Uzzaman, Md. Rasel;Park, Jeong-Woon;Kim, Sang-Wook;Lee, Jun Heon;Kim, Kwan-Suk
    • Food Science of Animal Resources
    • /
    • v.33 no.6
    • /
    • pp.696-700
    • /
    • 2013
  • A quick and reliable method for identifying meat origin is developed to ensure species origin of livestock products for consumers. The present study examined the identification of meat sources (duck, chicken, goat, deer, pig, cattle, sheep, and horse) using PCR by exploiting the mitochondrial 12S rRNA and mitochondrial cytochrome b genes. Species-specific primers were designed for some or all mitochondrial 12S rRNA nucleotide sequences to identify meat samples from duck, chicken, goat, and deer. Mitochondrial cytochrome b genes from pig, cattle, sheep, and horse were used to construct species-specific primers, which were used to amplify DNA from different meat samples. Primer sets developed in this study were found to be superior for detecting meat origin when compared to other available methods, for which the discrimination of meat origin was not equally applicable in some cases. Our new development of species-specific primer sets could be multiplexed in a single PCR reaction to significantly reduce the time and labor required for determining meat samples of unknown origin from the 8 species. Therefore, the technique developed in this study can be used efficiently to trace the meat origin in a commercial venture and help consumers to preserve their rights knowing origin of meat products for social, religious or health consciousness.

Species characterization of animal by DNA hybridization (DNA hybridization을 이용한 축종특이성 구명)

  • Lee, Myoung-heon;Kim, Sang-keun;Jung, Gab-soo;Park, Jong-myoung
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.513-522
    • /
    • 1999
  • DNA hybridization assay using probes prepared from liver was carried out to identify species characterization of the domestic animals. Gel electrophoresis showed that the target DNA extracted from raw muscle were 1kb and uniform pattern while fragments size of heated muscle were irregular. Hybridization was performed by adding 200ng/ml probe in hybridization solution and incubating for 12 hours at $68^{\circ}C$. To obtain good discrimination, applied washing buffer and washing step differently depending on the species. The probes of pig, horse and dog formed the specific hybrids with each target DNA respectively. Although cross reaction was detected in cattle, goat and sheep but signal intensity among these species made the discrimination possible each other. Such pattern was the same in the cases of chicken, turkey and duck. The hybridization pattern of heated muscle was similar to that of raw muscle in general, but the signal intensity was inferior to that of raw muscle. Species identification between closely related animal species, hybridized using the target DNA of such closely related animal species as a blocking agent, remarkable increase of discrimination from the evident decrease of non specific reaction compared with the control group. In addition, in the admixture where certain meat was included in the beef, pork, chicken meat, we could find whether any unjust meat was admixed or not. In this case, detection limit of certain meat in admixture was 1%.

  • PDF

Nested PCR for the Detection of Streptococcus mutans (Nested PCR를 이용한 Streptococcus mutans의 검출)

  • Choi, Min-Ho;Yoo, So-Young;Lim, Chae-Kwang;Kang, Dong-Wan;Kook, Joong-Ki
    • Korean Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.19-25
    • /
    • 2006
  • This study was undertaken to develop PCR primers for the identification and detection of Streptococcus mutans (by)using species-specific forward and universal reverse primers. These primers targeted the variable regions of the 16S ribosomal RNA coding gene (rDNA). The primer specificity was tested against 11S. mutans strains and 10 different species (22 strains) of oral bacteria. The primer sensitivity was determined by testing serial dilutions of the purified genomic DNA of S. mutans ATCC $25175^T$. The data showed that species-specific amplicons were obtained from all the S. mutans strains tested, which was not observed in the other species. The direct and nested PCR could detect as little as 2 pg and 2 fg of the chromosomal DNA from S. mutans ATCC $25175^T$, respectively. This shows that the PCR primers are highly sensitive and applicable to the detection and identification of S. mutans.