• Title/Summary/Keyword: Spatio

Search Result 1,245, Processing Time 0.032 seconds

Differences in the Control of Anticipation Timing Response by Spatio-temporal Constraints

  • Seok-Hwan LEE;Sangbum PARK
    • Journal of Sport and Applied Science
    • /
    • v.7 no.2
    • /
    • pp.39-51
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate differences in the control process to satisfy spatial and temporal constraints imposed upon the anticipation timing response by analyzing the effect of spatio-temporal accuracy demands on eye movements, response accuracy, and the coupling of eye and hand movements. Research design, data, and methodology: 12 right-handed male subjects participated in the experiment and performed anticipation timing responses toward a stimulus moving at three velocities (0.53m/s, 0.66m/s, 0.88m/s) in two task constraint conditions (temporal constraint, spatial constraint). During the response, response accuracy and eye movement patterns were measured from which timing and radial errors, the latency of saccade, fixation duration of the point of gaze (POG), distance between the POG and stimulus, and spatio-temporal coupling of the POG and hand were calculated. Results: The timing and radial errors increased with increasing stimulus velocity, and the spatio-temporal constraints led to larger timing errors than the temporal constraints. The latency of saccade and the temporal coupling of eye and hand decreased with increasing stimulus velocity and were shorter and longer respectively in the spatio-temporal constraint condition than in the temporal constraint condition. The fixation duration of the POG also decreased with increasing stimulus velocity, but no difference was shown between task constraint conditions. The distance between the POG and stimulus increased with increasing stimulus velocity and was longer in the temporal constraint condition compared to the spatio-temporal constraint condition. The spatial coupling of eye and hand was larger with the velocity 0.88m/s than those in other velocity conditions. Conclusions: These results suggest that differences in eye movement patterns and spatio-temporal couplings of stimulus, eye and hand by task constraints are closely related with the accuracy of anticipation timing responses, and the spatial constraints imposed may decrease the temporal accuracy of response by increasing the complexity of perception-action coupling.

Prediction of spatio-temporal AQI data

  • KyeongEun Kim;MiRu Ma;KyeongWon Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.119-133
    • /
    • 2023
  • With the rapid growth of the economy and fossil fuel consumption, the concentration of air pollutants has increased significantly and the air pollution problem is no longer limited to small areas. We conduct statistical analysis with the actual data related to air quality that covers the entire of South Korea using R and Python. Some factors such as SO2, CO, O3, NO2, PM10, precipitation, wind speed, wind direction, vapor pressure, local pressure, sea level pressure, temperature, humidity, and others are used as covariates. The main goal of this paper is to predict air quality index (AQI) spatio-temporal data. The observations of spatio-temporal big datasets like AQI data are correlated both spatially and temporally, and computation of the prediction or forecasting with dependence structure is often infeasible. As such, the likelihood function based on the spatio-temporal model may be complicated and some special modelings are useful for statistically reliable predictions. In this paper, we propose several methods for this big spatio-temporal AQI data. First, random effects with spatio-temporal basis functions model, a classical statistical analysis, is proposed. Next, neural networks model, a deep learning method based on artificial neural networks, is applied. Finally, random forest model, a machine learning method that is closer to computational science, will be introduced. Then we compare the forecasting performance of each other in terms of predictive diagnostics. As a result of the analysis, all three methods predicted the normal level of PM2.5 well, but the performance seems to be poor at the extreme value.

An efficient spatio-temporal index for spatio-temporal query in wireless sensor networks

  • Lee, Donhee;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4908-4928
    • /
    • 2017
  • Recent research into wireless sensor network (WSN)-related technology that senses various data has recognized the need for spatio-temporal queries for searching necessary data from wireless sensor nodes. Answers to the queries are transmitted from sensor nodes, and for the efficient transmission of the sensed data to the application server, research on index processing methods that increase accuracy while reducing the energy consumption in the node and minimizing query delays has been conducted extensively. Previous research has emphasized the importance of accuracy and energy efficiency of the sensor node's routing process. In this study, we propose an itinerary-based R-tree (IR-tree) to solve the existing problems of spatial query processing methods such as efficient processing and expansion of the query to the spatio-temporal domain.

Discussion on Spatio-temporal Modeling

  • Tingting, Mao;Yu, Liu;Baojia, Lin;Lun, Wu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.178-181
    • /
    • 2003
  • The temporal GIS data modeling methods are discussed in this paper. At first, two conceptual models of spatio-temporal data are introduced, and then some typical STDMs based on these two models are summed up and compared. After that, the spatio-temporal changes are analyzed thoroughly, and then how to model spatio -temporal data from different aspects is discussed. At last, several issues that need further research are pointed out.

  • PDF

EVALUATING AND EXTENDING SPATIO-TEMPORAL DATABASE FUNCTIONALITIES FOR MOVING OBJECTS

  • Dodge Somayeh;Alesheikh Ali A.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.778-784
    • /
    • 2005
  • Miniaturization of computing devices, and advances in wireless communication and positioning systems will create a wide and increasing range of database applications such as location-based services, tracking and transportation systems that has to deal with Moving Objects. Various types of queries could be posted to moving objects, including past, present and future queries. The key problem is how to model the location of moving objects and enable Database Management System (DBMS) to predict the future location of a moving object. It is obvious that there is a need for an innovative, generic, conceptually clean and application-independent approach for spatio-temporal handling data. This paper presents behavioral aspect of the spatio-temporal databases for managing and querying moving objects. Our objective is to impelement and extend the Spatial TAU (STAU) system developed by Dr.Pelekis that provides spatio-temporal functionality to an Object-Relational Database Management System to support modeling and querying moving objecs. The results of the impelementation are demonstrated in this paper.

  • PDF

Applications of Open-source Spatio-Temporal Database Systems in Wide-field Time-domain Astronomy

  • Chang, Seo-Won;Shin, Min-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.53.2-53.2
    • /
    • 2016
  • We present our experiences with open-source spatio-temporal database systems for managing and analyzing big astronomical data acquired by wide-field time-domain sky surveys. Considering performance, cost, difficulty, and scalability of the database systems, we conduct comparison studies of open-source spatio-temporal databases such as GeoMesa and PostGIS that are already being used for handling big geographical data. Our experiments include ingesting, indexing, and querying millions or billions of astronomical spatio-temporal data. We choose the public VVV (VISTA Variables in the Via Lactea) catalogs of billions measurements for hundreds of millions objects as the test data. We discuss issues of how these spatio-temporal database systems can be adopted in the astronomy community.

  • PDF

Neural Network Design for Spatio-temporal Pattern Recognition (시공간패턴인식 신경회로망의 설계)

  • Lim, Chung-Soo;Lee, Chong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1464-1471
    • /
    • 1999
  • This paper introduces complex-valued competitive learning neural network for spatio-temporal pattern recognition. There have been quite a few neural networks for spatio-temporal pattern recognition. Among them, recurrent neural network, TDNN, and avalanche model are acknowledged as standard neural network paradigms for spatio-temporal pattern recognition. Recurrent neural network has complicated learning rules and does not guarantee convergence to global minima. TDNN requires too many neurons, and can not be regarded to deal with spatio-temporal pattern basically. Grossberg's avalanche model is not able to distinguish long patterns, and has to be indicated which layer is to be used in learning. In order to remedy drawbacks of the above networks, unsupervised competitive learning using complex umber is proposed. Suggested neural network also features simultaneous recognition, time-shift invariant recognition, stable categorizing, and learning rate modulation. The network is evaluated by computer simulation with randomly generated patterns.

  • PDF

Spatio-Temporal Query Processing Over Sensor Networks: Challenges, State Of The Art And Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz;Tanveer, Sadaf;Iqbal, Majid
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1756-1776
    • /
    • 2012
  • Wireless sensor networks (WSNs) are likely to be more prevalent as their cost-effectiveness improves. The spectrum of applications for WSNs spans multiple domains. In environmental sciences, in particular, they are on the way to become an essential technology for monitoring the natural environment and the dynamic behavior of transient physical phenomena over space. Existing sensor network query processors (SNQPs) have also demonstrated that in-network processing is an effective and efficient means of interaction with WSNs for performing queries over live data. Inspired by these findings, this paper investigates the question as to whether spatio-temporal and historical analysis can be carried over WSNs using distributed query-processing techniques. The emphasis of this work is on the spatial, temporal and historical aspects of sensed data, which are not adequately addressed in existing SNQPs. This paper surveys the novel approaches of storing the data and execution of spatio-temporal and historical queries. We introduce the challenges and opportunities of research in the field of in-network storage and in-network spatio-temporal query processing as well as illustrate the current status of research in this field. We also present new areas where the spatio-temporal and historical query processing can be of significant importance.

Query Processing of Spatio-temporal Trajectory for Moving Objects (이동 객체를 위한 시공간 궤적의 질의 처리)

  • Byoungwoo Oh
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.52-59
    • /
    • 2023
  • The importance of spatio-temporal trajectories for contact tracing has increased due to the recent COVID-19 pandemic. Spatio-temporal trajectories store time and spatial data of moving objects. In this paper, I propose query processing for spatio-temporal trajectories of moving objects. The spatio-temporal trajectory model of moving objects has point type spatial data for storing locations and timestamp type temporal data for time. A trajectory query is a query to search for pairs of users who have been in close contact by boarding the same bus. To process the trajectory query, I use the Geolife dataset provided by Microsoft. The proposed trajectory query processing method divides trajectory data by date and checks whether users' trajectories were nearby for each date to generate information about contacts as the result.

  • PDF

Spatio-Temporal Semantic Sensor Web based on SSNO (SSNO 기반 시공간 시맨틱 센서 웹)

  • Shin, In-Su;Kim, Su-Jeong;Kim, Jeong-Joon;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.9-18
    • /
    • 2014
  • According to the recent development of the ubiquitous computing environment, the use of spatio-temporal data from sensors with GPS is increasing, and studies on the Semantic Sensor Web using spatio-temporal data for providing different kinds of services are being actively conducted. Especially, the W3C developed the SSNO(Semantic Sensor Network Ontology) which uses sensor-related standards such as the SWE(Sensor Web Enablement) of OGC and defines classes and properties for expressing sensor data. Since these studies are available for the query processing about non-spatio-temporal sensor data, it is hard to apply them to spatio-temporal sensor data processing which uses spatio-temporal data types and operators. Therefore, in this paper, we developed the SWE based on SSNO which supports the spatio-temporal sensor data types and operators expanding spatial data types and operators in "OpenGIS Simple Feature Specification for SQL" by OGC. The system receives SensorML(Sensor Model Language) and O&M (Observations and Measurements) Schema and converts the data into SSNO. It also performs the efficient query processing which supports spatio-temporal operators and reasoning rules. In addition, we have proved that this system can be utilized for the web service by applying it to a virtual scenario.