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Abstract 
 

Wireless sensor networks (WSNs) are likely to be more prevalent as their cost-effectiveness 

improves. The spectrum of applications for WSNs spans multiple domains. In environmental 

sciences, in particular, they are on the way to become an essential technology for monitoring 

the natural environment and the dynamic behavior of transient physical phenomena over space. 

Existing sensor network query processors (SNQPs) have also demonstrated that in-network 

processing is an effective and efficient means of interaction with WSNs for performing queries 

over live data. Inspired by these findings, this paper investigates the question as to whether 

spatio-temporal and historical analysis can be carried over WSNs using distributed 

query-processing techniques. The emphasis of this work is on the spatial, temporal and 

historical aspects of sensed data, which are not adequately addressed in existing SNQPs. This 

paper surveys the novel approaches of storing the data and execution of spatio-temporal and 

historical queries. We introduce the challenges and opportunities of research in the field of 

in-network storage and in-network spatio-temporal query processing as well as illustrate the 

current status of research in this field. We also present new areas where the spatio-temporal 

and historical query processing can be of significant importance. 
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1. Introduction 

A wireless sensor network (WSN) may be viewed as a distributed computing platform [1], with 

each node as computational resource and not just a data collection and data transmission device. 

Albeit limited, node resources such as processing power and memory can be used to execute 

application logic. WSN can be construed as an intelligent and largely autonomous  instrument 

for scientific observation at fine temporal and spatial granularities over large areas. Each value 

measured by a sensing device integrated with a particular node can have associated with it the 

location of the sensor node at the time of measurement, the time at which measurement was 

taken and the nature of the measured reading. The spectrum of applications for WSNs spans 

multiple domains. In the environmental sciences, in particular, they are on the way to become 

an essential tool for monitoring complex physical phenomena. This is testified by many 

reported deployments, for example, close to fifty environmental sensor networks were 

surveyed in [2]. The importance of identifying, tracking and reporting relationships between 

dynamic, and  transient spatial phenomena and application-specific geometries has been 

stressed in environmental monitoring applications. As an example of the usefulness of this 

kind of information, consider the following context. Efficient water management is a major 

concern for farmers of many crops. Imagine that a farmer has deployed sensor nodes [3], and is 

interested in part of a field where the soil moisture has dropped below a certain threshold, so 

that only those parts are irrigated, given the limited water supply. The sensor nodes sense the 

soil moisture and, using their short-range radio, communicate with each other to send the 

real-time information from the fields to the farmer. Such a WSN, therefore, allows the farmer 

to get a real-time digital picture (in the form of sensed measurements) of the physical world. 

The raw data being collected, enables the farmer to see what is going on in the fields and to 

adjust his management strategies. In environment monitoring applications, networks are 

deployed with the aim of long-term monitoring in the field. Data analysis in such applications 

includes searching for patterns or events, feature extraction, topological relationships of 

physical phenomena with application-specific geometry (e.g., whether the low moisture event 

region is adjacent, or inside, or outside a cultivated field).  

Because of resource constraints, it is not energy-efficient for each node to send every sensed 

measurement towards some external repository for storage, where the required data analyses 

can be performed off-line. One alternative that may extend the network life is to store the data 

and events in the sensor nodes themselves, using persistent storage devices such as flash 

memory units and then to push queries on to the network and into the node. But, this approach 

involves addressing challenges like storage limitations, spatio-temporal query language, 

spatio-temporal, and historical algebra that make it difficult to implement in practice. 

In-network processing uses distributed algorithms for information processing with a view, 

primarily, of reducing network traffic and thus improving the longevity of deployments at 

larger scales. TinyDB [4], Cougar [5], and SNEE [6] are some of the examples of available 

in-network declarative query processing over WSNs. These pieces of work have shown that a 

WSN can be viewed as a distributed database. This has led to the approach of retrieving data 

from a WSN by viewing it as the computational environment upon which SQL-like declarative 

queries are compiled and optimized to run. Declarative queries allow users to specify only 

what data they want from a WSN. Programming WSNs requires specialized knowledge, the 

scarcity of the resources puts a tight limit on code size, and debugging is cumbersome. 

Declarative queries on the other hand, allow for low-cost repurposing, since rather than 

cumbersome reprograming of the network, users can just pose a different query to the SNQP 

[4]. However, current SNQP’s are unable to cater for a wide range of sensor network 

applications because they do not take spatio-temporal requirements into account. Existing 
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declarative query languages for WSNs provide support for obtaining and performing simple 

analyses on live data. However, the support for situating data in time or in space and 

spatio-temporal query-level support is non-existent. Another aspect that is missing from 

current SNQPs is the analysis of historical data. Access to live data is helpful in real-time 

monitoring but sometimes it is required to perform analysis on historical data. This requires a 

storage manager to handle decisions as to how and where to store data so that it can be accessed 

in an energy-efficient manner with low latency.    

There are many environmental monitoring applications (such as oil spills, habitant monitoring 

[7], precision agriculture [8] or forest fires) that require spatial and temporal extensions to 

query language and the algebra. The challenge is to extend sensor network query processors to 

include the support for spatio-temporal data retrieval and analysis. Sensor network applications 

can be divided into two broad areas, viz., data-driven and event-driven. In data-driven 

applications, scientists are interested in collecting measurements to perform detailed analysis; 

of continuous time-series of observations. In a sensor network, each sensing device on a node 

can generate a data stream into which tuples are placed often at well-defined time intervals and 

in fixed order. These tuples normally stay for a limited time period in the memory of the sensor 

node. However, if the same reading is required for later reference, then one may need to store it 

explicitly locally in flash memory. This is made even more challenging by limited storage 

available and the fact that storage management is expensive.  

In event-driven WSN applications (e.g., precision viticulture [3], volcano monitoring [9]) 

scientists are interested in the shape and size of an event as it occurs in the sensing scope of the 

WSN. The event geometry,  which we refer to as an induced geometry, is definable in terms of 

the location in space of those sensor nodes that satisfy the event predicate (e.g., humidity>98 

and  temperature<10). Continuous monitoring of event geometries makes it possible to track 

the spatial evolution of the underlying spatial phenomenon. For supporting evaluation of 

spatio-temporal historical queries, it is necessary to store the information related to such 

geometries. This mechanism will allow users to keep track of the changing state of an object or 

of those properties for which a history is maintained. This is done by tracking the changes that 

result from assignments made to a property or relationship over time and identifies such 

occurrence of change with a timestamp and the corresponding value. As sensor nodes are 

equipped with limited persistent storage, there would be a need that each node be equipped 

with a sophisticated storage manager for supporting historical spatio-temporal queries.       

The main contributions of this paper are as follows:  

 We have presented few motivating environmental monitoring applications where 

spatio-temporal query processing can be beneficial. Based on the motivating example, we 

have also identified some of the spatial, temporal, spatio-temporal queries, the in-network 

evaluation of which can be beneficial for such applications.  

 We have outlined the challenges and opportunities of in-network spatio-temporal query 

processing in WSNs and also the features that should be supported by storage managers.  

 We have surveyed the work related to spatial/temporal analysis, storage managers and 

management models for evaluation of spatio-temporal and historical queries in WSNs.  

 Finally, we have depicted future research scopes of spatio-temporal query processing in 

WSNs. 

The remainder of the paper is organized as follows: Section 2 describes how in-network 

spatio-temporal query processing in environmental monitoring application can be more 

beneficial. In this section some of the example spatial, temporal, spatio-temporal, 

spatio-tempral historical queries are given. Section 3, highlights some of the challenges in 
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supporting in-network execution of spatio-temporal and historical queries. Section 4, survey 

the work related to supporting spatial/temporal analysis, storage managers and management 

models for evaluation of spatio-temporal and historical queries. Section 5, focuses on some 

discussions that include available solutions, future research scope, open issues and finally, 

Section 6, concludes the paper. 

2. Motivation 

A number of recent deployments of sensors have been made for environmental monitoring 

purposes: about 25 nodes were deployed in  Camalie vineyards [3], 45 sensor nodes in Network 

Avanzato per il Vigneto (NAV) system [10] for precision viticulture, 150 nodes in LofarAgro 

project [8] to fight fungal-disease in the field, about 26 nodes in AgFrostNet project [11] for 

frost monitoring, and 200 nodes in Great Duck Island project [7], to monitor burrow occupancy 

and the environmental changes occurring inside the burrow and on the surface during the 

period of the breeding season. In most of these environmental monitoring applications, the 

WSN is, by and large, an isolated system with depletable resources. Replacement of the 

batteries of sensor nodes under such scenairios is not feasible because of the following reasons: 

(1) time consuming and expensive; (2)  minimal disturbance is crucial for avoiding distortion 

in results [7] (the birds under study might change their behavioural patterns or distributions).   

WSNs have been used in precision viticulture for suggesting appropriate management 

practices to increase productivity and the quality of the crops [3][8][10][11]. For controlling 

the spread of disease, pesticides need to be applied only, if temperature and humidity 

conditions stand in some specific relationship (soil moisture has risen above and temperature 

has dropped below certain thresholds).  The regular spray of the pesticides needs to be stopped 

in high temperature or low moisture, as it is dangerous for the health of the crop. Similarly, 

climate poses a major threat of plant injury due to low-temperature. For frost protection, some 

wine grape growers rely primarily on wind machines, while others, use wind machines and 

irrigation in combination to adequately modify temperature. These frost/freeze protection 

systems are expensive. Therefore, such measures should be taken only if the air temperature 

reaches a critical threshold. Real-time temperature monitoring combined with historical data 

insight could prevent frost effects. The supply of nutrients to the plants depends highly on soil 

moisture. The pH is a measure of the intensity of the acidity. Wines with low to moderate pH 

tend to be crisper and age better as compared to wines with higher pH levels.   

In all these scenairios, nodes collect temperature, moisture, and other environmental properties. 

Every node transmits sensed value to some destination that is external to the WSN for storage 

and off-line analysis, that may be prohibitively expensive and sometimes not possible, given 

the typical data collection rates and network sizes. This approach is also referred as 

warehousing. In this approach, apart from network longevity, scalability is an issue as it will 

result in increased bandwidth requirements, raising the risks of packet loss. In addition, the 

nodes that lie closer to the sink consume energy at a much faster rate, as they have to relay 

more packets as compared to those nodes that lie at the far edge of the network. This can 

significantly reduce the scalibility and lifetime of large sensor networks. In the last decade, 

scalable  MAC and routing protocols for sensor networks have been well addressed, but the 

scalability of in-network storage and in-network spatio-temporal analysis in a cost-effective 

manner has been largely overlooked.   

Spatio-temporal queries will enable us in identifying problematic areas or areas prone to 

disease and will allow us to analyze and monitor the temperature and soil moisture with 

temporal and spatial precision in order to decide when and where to apply the chemicals, and 
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when to start or stop the protective systems. Such queries will also enable us to create a 

humidity map, to analyze the spatial variations of soil and nutrients and to create a map of soil 

vigour potential to determine why the soil vigour is too small or too large.  Grape growers take 

advantage of natural factors, by selecting suitable sites for particular grape varieties. Variations 

in the physical conditions and climatic enviroment usually result in vine growth, the quality of 

which is not uniform throughout the vineyard. Wine makers achieve greater control over the 

product by selecting, fermenting and blending batches of grapes with suitable ripeness and 

flavors. Batch selection could be decided with the assistance of spatio-historical analysis of 

data related to grapes in the vineyard and environmental factors affecting their development. 

Historical analysis allows for the traceability of product through a record. It will allow the 

farmers to map the physical conditions and climatic environment  with the quality of the yield. 

The growers will be able to see that how much spatial variation has occured in crop yield in 

response to management practices under varying natural conditions. This could influence 

future management decisions and will allow to  apply a variable approach to each vineyard 

block or field.  Spatio-temporal query processing will allow the farmers to determine spatial 

variations in vegetation balance, vigour, health and soil moisture etc., and  to correlate the 

aforementioned factors with maps of soils, microclimate, topography etc.  
 

Fig. 1. (a) Fields (f1-f10) with event geometries in a vineyard  (b) Example WSN over  (a) showing 

approximate geometry membership 

Based on the precision viticulture application, this section will present some examples of 

spatial, temporal, spatio-temporal, and spatio-temporal historical queries. One real-world 

example in which WSNs are being deployed for precision viticulture is at Camalie Vineyards 

[3]. We have used the underlying permanent geometries (f 1-f10) in this deployment (shown in 

Fig. 1.) as the basis for our examples (See http://camalie.com/CamalieGIS/Naked/default.asp 

[12 June 2011] for the geometries we use as our basis.). Permanent geometries (which we refer 

to as an asserted geometry) are representations of physical features (e.g., a well or a cultivated 

field). Fig. 1., shows the asserted (f 1-f10) and induced (M and T) geometries. More formally, 

given thresholds X and X’, let M be the induced geometry where soil moisture is above X and T 

the induced geometry where temperature is below X’. Both geometries M and T have two 

elements. Both elements of geometry T are without holes. One of the elements of geometry M 

has a hole and other is without one. Note that the nodes within a hole do not belong to the 

interior of the corresponding geometry. An asserted geometry of type region may contain holes 

such as a cultivated field with a hole representing where a lake is located and so on.    
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2.1 Spatial Queries  

 Every 20 minutes, report the average temperature from the geometry M lying  vertex 
inside f5. 

 Report whether there is a need to spray pesticides in f5. (Note: There will be a need to 

spray pesticides, if the query ((M intersects f5) and ((T intersects f5) and (M intersects 

T ))) returns True)  

 Report the area of the region lying at the intersection of f5, M and T . (i.e., to   evaluate 

the query containing the following expression area((M intersection f5) and ((T 

intersection f5) and (M intersection T ))) 

 Report the largest area among the M geometries in f5 plus f6. 

 Every 20 minutes, report the maximum temperature from f5 which is not lying at the 

intersection of geometry M and T . (i.e., f5 minus (T intersection M )). 

 Every 10 minutes, report the average temperature from sensor nodes, which are  lying at 

distance greater than  5 meters from geometry M . 

2.2 Temporal Queries  

 Every 30 minutes, report the stream of  temperatures between 1:00 am and  9:00 am today. 

 Report the time, when the induced geometry M is first detected today. 

 Every 30 minutes, report the stream of time and locations where above-ground temperature 

is  greater than temperature threshold between 7:00 am and 9:00 am. 

 Report the stream of maximum and minimum pH-levels for each day, between 1:00 pm 

and 5:00 pm, during the previous month. 

 Report the stream of time and locations, where the temperature is below 0 degrees between 

1:00 am and 10:30 am during the previous week. 

2.3 Spatio-Temporal/ Spatio-Temporal Historical Queries  

 Every 60 minutes, report the minimum temperature from sensors areainside field  f5 

minus the ones that are lying within 5 meters distance from T . 

 Every 60 minutes, obtain a stream of  average, maximum and minimum temperatures in 

the last 60  minutes of every temperature source areainside f5. 

 Every 10 minutes, report times in the last hour when the average temperature  in field f5 

was the same as the maximum temperature in the intersection of   its boundary with river. 

 Report three times, when highest average temperature intersects field f5 recorded in the 

previous week. 

 Every 24 hours, obtain a stream of maximum and minimum temperatures for the past 7 

days from every temperature source areainside f5. 

 Every 30 minutes, report the stream of maximum and minimum per day pH-levels, for the 

past 01 month from every temperature source areainside f5. 

 Report previous day’s minimum and maximum temperature, moisture, and pH-levels from 

every source areainside (f5 plus f4 plus f6). 

 Every 30 minutes, report hourly average of the previous day’s temperature, pH-level and 

moisture from every source areainside vineyard. 
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3. Challenges 

Spatio-temporal querying over sensor networks clearly raises research issues at several levels. 

Some of the challenges are as follows:  

 

3.1 Persistent Storage 

 For persistent storage, sensor nodes rely on flash memory. Despite the advances in flash 

technologies, a sensor network cannot anticipate to emulate the volume and size of classical 

devices available at a base station outside the sensor network. Flash memory is a specific type 

of Electrically Erasable Programmable Read-Only Memory (EEPROM). A sensor network 

still cannot handle the storage and querying requirements of monitoring applications that 

depend on very long time-series. Table 1 discusses the storage capacity of different 

commercially available sensor nodes [12]. Flash memory has a number of distinct 

characteristics as compared to other storage media that make efficient storage management a 

challenging task. A flash memory is usually organized in blocks that consist of pages. In flash 

memory, data cannot be over-written due to the physical erase-before-write characteristics. 

Only single or multiple pages of memory can be erased at a time. Each page can be written only 

a limited number of times. The number of erase operations allowed to each block is also 

limited.    
   

Table 1. Storage capacity of  sensor nodes 

 Mica2 Micaz Imote 2 IRIS TelosB Tmote Sky 

Data Storage 512KB 512KB 32MB 512KB 1MB 1MB 
 

In-network storage must rely on policies and strategies to optimize the use of scarce space with 

a view to supporting queries over the widest possible range, in time and space, of values. It may 

be advantageous to support an aging policy (that is the more recent the data values, the less 

summarized they are) as a result of which older data is stored in coarser-grained summaries, 

implying that the queries posted over the old data will be responded with much less precision. 

But at the same time, storing the data for future reference gives rise to several compromises. 

For example, how good an approximate answer should be, given the trade-off between 

accuracy and level of summarization, for how long should the data be stored, when should 

aging policies be applied, how to trade-off compression benefit and query performance, how to 

trade-off the availability of data for applications and network longevity, etc. Using compressed 

summaries will also lead to access mixed methods as some data will be transformed at higher 

resolution, other at lower resolution and some not at all. The greater the number of access 

methods, higher will be the computation requirements for compression and decompression of 

the data as well as for merging the results produced by various access methods. For most of the 

historical queries, an efficient search strategy is also required. Sometimes, it is possible that the 

measurements are collected and stored in the history at one time granularity but afterwards it is 

required to report the queries responses based on the recorded data at different time granularity.  

3.2 Distributed Data 

WSN is a distributed platform, therefore, each node is only aware of the part of the induced 

geometries that lie within its sensing range and that part of asserted geometries that lie within 
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its radio range.   A query related to the detection of an induced geometry is re-evaluated with 

some periodicity and each node independently updates the local information that defines the 

induced geometries it is a member of.   The inherent scarcity of resources and the nature of 

underlying platform, where execution is distributed and carried out periodically over sensed 

data streams, gives rise to non-trivial challenges of defining framework for spatio-temporal 

analysis, identification of spatial, temporal and historical abstract data types, to define the 

operations that can be supported by the spatial, temporal and historical data types and to design 

algorithms for these operators over the geometries that can be represented over the framework, 

with the optimization goal of energy, storage efficiency and short response times. The 

resolution or scale of the spatial data may vary, geometries may have different spatial 

dimensions, and spatial types (e.g., point, line, or region). Following the algebraic approach 

[13,14,15], application-specific geometries can be defined based on abstract data types such as 

point (a value of which could denote, e.g., a well), line (a value of which could denote, e.g., a 

river, or a pipeline), region (a value of which could denote, e.g., a building, or a cultivated 

field). These several forms of diversity give rise to challenges on how to integrate and to keep 

them consistent in order to provide correct answers for queries.      

3.3 Aggregation of Information 

Recall that information about a geometry lies in a distributed fashion inside the WSN and that 

each node is only aware of that portion of induced geometry that is in its sensing range and that 

part of asserted geometry that is in its communication range. This implies that the computation 

of spatial operations requires aggregating information from all the nodes that belongs to the 

operands of the operators involved. An operand may comprise a single-element geometry or a 

multi-element geometry with or without holes. Furthermore, induced geometries are dynamic, 

which implies that, their shape and size cannot be known in advance. This requires the design 

of efficient in-network hierarchial aggregation scheme that allows for aggregation of 

information, from single and multi-element geometries with or without holes to compute the 

final result. Over the top of spatial aggregation, it would be very challenging to design some 

technique to perform in-network aggregation functions like min, max, average over the sensed 

measurements and temporal aggregation functions like per hour. For example, consider the 

query “Every 60 minutes, obtain a stream of  average, maximum and minimum 
temperatures in the last 60  minutes of every temperature source areainside f5”.  Let  

us suppose that the temperature is sensed every 05 minutes.   

3.4 Synchronization in Complex Queries.  

For timely coordination, participating entities must start and finish the processing of each 

spatial,  temporal and historical operator in the query at the appropriate time in order to avoid 

delays in response and in achieving accuracy. For example in the evaluation of a spatial query 

which may comprises several spatial operators, the nodes can only participate in the evaluation 

of spatial operator, if they are part of one or both operands. During the evaluation of a spatial 

query, at each point in time, there may be situations where some of the nodes satisfy the 

participation requirements of one or more spatial operators in the query, and some satisfy for 

other operators, and others do not satisfy for any of the operator.  For example, upon 

in-network evaluation of the query satisfying algebraic expression ((M intersects f5) and ((T 

intersects f5) and (M intersects T )))), it is possible that some nodes are part of geometry f5, 

M and T, other part of f5 only, and some do not satisfy  any of the operand etc. 
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3.5 Designing of a Spatio-temporal Query Language 

To design a spatio-temporal query language which must include features to meet the 

functionality requirement of stream data in the light of real world deployed environmental 

sensor network applications. It would require development of operational semantics for the 

query language including typing and translation rules. As previously described, current sensor 

network query languages have no support for spatial, temporal and historical constructs (e.g., 

types and operations). The challenge is how to represent spatio-temporal types operations and 

then to integrate the resulting algebras into language.   The basic motivation behind the 

declarative query approach is that of delegating to the system (i.e., spatio-temporal SNQP), the 

task of making the decisions that are needed to generate an optimized execution plan, 

specifying from which sensor nodes and which sensing devices to acquire data (or from which 

flash memory storage in which node to retrieve data), where and what to store, in which nodes 

and in which order to perform various database operations, when and where should 

intermediate results be sent and others. The system must strive to generate a query evaluation 

plan that not only meets the functional but also non-functional QoS expectations (such as 

response time, longevity of the network, result accuracy and others).  

3.6 Query Evaluation Engine 

One of the difficult challenges is the design of in-network spatio-temporal query evaluation 

engine with which each node can be equipped with for the evaluation of complex 

spatio-temporal queries using the corresponding operator algorithms. The algorithmic strategy 

of the evaluation engine for in-network distributed spatio-temporal analysis over WSN should 

be specifically tailored for energy-efficient in-network execution. The algorithmic strategy for 

the evaluation of complex spatial, spatio-temporal queries should be divided into 

logically-cohesive components thereby facilitating component reuse and sharing. Each node 

equipped with the evaluation engine must be allowed to participate in query dissemination, to 

contribute in the distributed evaluation of queries, to participate in the aggregation of 

intermediate results and in the routing of results to the user.  

3.7 Storage Manager Features 

By considering the various environmental monitoring applications described in the previous 

section various features/requirements that are envisaged for a storage manager are as follows:  

 It should allow for writing data to multiple materialization points/files at a time.   As a 

result, it would be possible to store the responses of the query involving   sensing from 

different sensing attributes in separate materialization points. The query e.g., 

Materialize temperature, moisture acquired every 60 seconds, involves two sensing 

attributes that are collected at the same acquisition rate and with same timestamps. It 

will be useful to store the pressure and temperature in separate files for future detailed 

analysis of individual sensing attribute as well as of both attributes in comparison.  

 It should allow both reading and writing operation on an open file i.e. to utilize 

materialization point even if it has not been created in its entirety. This will allow to 
continuously perform analysis on the data as it is acquired, instead of  waiting for the 

duration of the materialization query to complete. Forexample, in case of TinyDB [4] 

which makes use of Matchbox [16] storage manager, the materialization point, cannot 

be utilized until it is created in its entirety. 

 It should allow for reading data from multiple files at a time. This will not only allow 

to perform comparison operation over the two materialized files e.g., to reply the query 
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Report the earliest time, location at which the induced geometry M is first detected 

today, but also to perform database operations such as SQL-project, and SQL-join.  

 It should provide device life efficiency by supporting efficient wear-levelling 

mechanism. Updation   of even a single byte in any page requires an expensive erase 

operation on the  corresponding block before the new data can be rewritten. As each 

page on   flash memory has limited life, flash file systems should use sophisticated data   

structures and algorithms, which allow  for efficient not-in-place updates of data,   

reduce the number of erasures, and level the wear of the pages in the device.  

 It should support high performance and reliability. For this purpose rollback schemes 

can be used.  

 It must provide in-network data life efficiency, i.e., instead of erasing the data   to 

generate space for new data, efficient aging policies must be defined that  ellaborate 

what should be the levels of resolutions (i.e., how much compressed  summaries). 

 It must provide storage efficiency by figuring out how to store data, so that a complete 

page is not wasted, if only few bytes needs to be stored. 

 It should support efficient searching mechanism to support spatio-temporal   queries. 

These searching mechanism must allow to efficiently search data that  is stored at 

different time granularity or because of aging policy have been summarized. 

 Additional features includes: (1) support for files deletion, (2) updating information 

and metadata once stored. 

4. Literature Review 

At present, in-network spatio-temporal analysis in WSN is not catered for by a comprehensive, 

expressive, and well-founded framework.  Spatio-temporal querying over sensor networks 

clearly raises research issues at several levels. It is crucial, therefore, to survey the state of art 

on several areas of the literature, as they may contribute insights, methods and techniques for 

building a complete framework for spatio-temporal query processing in sensor network. 

4.1 Spatial Analysis  

Farhana et al. [13][14][15] proposed the first generic framework capable of underpinning an 

algebraic approach to spatial analysis in WSNs as a distributed platform for in-network 

processing. This framework considers three kinds of geometry; viz., asserted, induced and 

derived. Derived geometries are obtained by applying spatial-valued operations to existing 

spatial values (e.g., applying intersection to two values of type regions would result in a new 

geometry of type, say, regions). The authors presented the definition of spatial algebra over the 

geometries representable by the framework. The spatial algebra comprises three spatial types, 

viz., point, line, and region. The value of spatial type can be single-element or multi-element. A 

value of type region  may or may not have a hole. The authors have presented distributed 

in-network algorithms for the operations in the spatial algebra over the representable 

geometries, thereby enabling (i) new geometries to be derived from induced and asserted ones 

and (ii) topological relationships between geometries to be identified. The algorithms are 

specifically tailored for power-efficient in-network execution, with a focus on minimizing 

unnecessary communication and reducing the size of information to be communicated. This 

work suffers from the fact that it is not integrated with any existing WSN query processors.  

The work described in [18] provides a computational model for WSNs to detect topological 

change (i.e., hole formation, hole disappearance, event region splitting, and event region 

merging) in dynamic regions based on local low-level snapshots of spatio-temporal data. The 
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descriptions of the change is computed by the comparison of the event state at the consecutive 

two evaluation periods. At each evaluation period, once the boundary nodes are identified, the 

next step is the formation of groups based on the boundary nodes that have the same state in 

consecutive evaluation periods. The boundary nodes collect group information from their 

neighbours and participate in aggregation. After the reception of information from the group 

leaders, the sink node constructs the snapshot of the event region and the location of 

topological change. Farah and Zhong [19], propose an event-driven approach for capturing 

topological changes. The basic data structure used for the detection of topological changes is 

neighborhood ring. This work allows for the in-network detection of topological changes, but 

does not focus on reporting back the information related to topological changes. Jiang and 

Worboys [20] propose in-network algorithms for the detection and reporting of topological 

changes. The work allows for reporting the Minimum Bounding Rectangle (MBR) of the area 

where change has taken place and the type of topological change. 

4.2 Management Models for Supporting Spatio-temporal/historical Queries 

Five management models that have been used for querying spatial, temporal or historical 

sensor data are as follows:  

4.2.1 Warehouse Approach.  

With reference to Section 2, this model focuses on extracting each and every measurement 

from the sensor nodes and transmitting it for storage in some external repository, where the 

required data analysis is performed, off-line. We have already discussed in Section 2, that this 

approach may be very expensive. For the reduction in communication cost, there exist work 

which focus on computing the event and boundary of the event geometry [21] in a distributed 

manner using in-network processing techniques. The aim is to transmit the information only 

from the boundary nodes of the event geometry towards sink. Sink is held responsible for 

creating snapshot of the event geometry from the boundary information.  This work related to 

inducing event geometry can act as a stepping stone to achieve our broader goal of 

cost-effectively performing in-network spatio-temporal analysis. 

By using the geometries shown in Fig. 1, we have conducted an experiment using warehousing 

approach and compared the results with our experiment related to sending only event 

information from boundary nodes towards the sink. The trade-off is between processing costs 

against transmission costs.  The aim of the experiment is to show that, particularly for 

multi-hop networks, performing in-network processing is more energy-efficient. 

We have implemented the algorithm in nesC over TinyOS [22] and used PowerTOSSIM [23] 

for power modeling. The specification of the sensor nodes we have simulated is [Type = 

MICA2, Radio = CC1000, Energy Stock = 31,320,000 mJ (2 Lithium AA batteries)]. The radio 

range is set such that the nodes can form a one-hop neighbourhood. The radio connectivity 

between nodes is based on distances between nodes and, therefore, the maximum cardinality of 

the one-hop neighbourhood of a node is set to eight in our experiments.   

It is assumed that each node knows its parent, to which it has to transmit message, and, to 

receive messages from, its children. A node tries to send a packet to its parent up to four times 

if it does not receive an acknowledgement from parent. Otherwise, it broadcasts the message to 

its neighbours. Nodes also make sure to not forward duplicate packets.  The results of these 

simulations are shown in Fig. 2.  In this experiment, for a network size of 166 nodes, the 

amount of energy consumed by CPU and radio is close to 2,573 kmJ. If each node is powered 

by two AA batteries, the initial energy stock per node is 31,320,000 mJ. The total energy stock 

inside the network is then the network size times 31,320,000. This implies that each evaluation 

episode consumes between 0.05% and 0.09% of the total energy stock for networks containing 
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between 166 and 223 nodes, respectively. It can be seen that cost of sending event information 

from each node part of a network is much higher as compared to our experiment in 

[13][14][15], in which we only transmit the event information from boundary nodes.  It can be 

seen in [13][14][15], that each evaluation episode consumes between 0.008% and 0.016% of 

the total energy stock for networks containing 166 and 223 nodes. This is low enough that 

adding the energy required to induce the event geometries (not counted in [13][14][15]) is 

unlikely to significantly detract from the force of these conclusions.   

4.2.2 Suppression Approach 

Suppression refers to techniques that help in reducing the cost of reporting changes in sensor 

values. These techniques are generally independent of queries. Temporal suppression refers to 

a decision not to report a value from a node if, that value has not changed since the last time it 

was reported from that node. This kind of suppression aims for a reduction in communication, 

but it cannot contend with a situation in which e.g., the temperature changes across an entire 

region to the same value. Spatial suppression techniques avoid simultaneous transmission of 

identical values by a group of neighbours. One of the main challenges faced in suppression 

techniques, is that lost messages must be distinguished from the suppression event.  

In [24], the authors contribute a spatio-temporal suppression technique, called constraint 

chaining (CONCH), for minimizing energy cost in applications where change is slow or 

predictable and data is spatially correlated.  

4.2.3 Query data using Aggregation Schemes 
The third model focuses on in-network aggregation of the data produced by the sensor nodes. 

Examples include averages [25], minima and maxima [26], histograms [27] and summaries 

based on wavelets or distributed regression [28]. Although, this approach results in better 

energy efficiency than the first because only the aggregates are transmitted, it fails to retain the 

shape and structure of the data and only provides aggregate statistics. This approach is also not 

effective for spatio-temporal data analysis as the temporal and spatial aspects of data are lost.       

 

Fig. 2. Experiment O1:   Behaviour w.r.t. Network Size   

4.2.4 Query data using Approximation Schemes 

The fourth model addresses the need to query historical data by using approximation as 

opposed to aggregation techniques to reduce the communication. These approximation 
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techniques are based on discovering and exploiting statistical models to report approximate 

answers probabilistic error guarantees [29]. Various models have been proposed according to 

which either the sensor nodes only push unexpected results or the base station only pulls data 

from a specific node when the query posted by the user requires greater accuracy than provided 

by the model at the base station. Such approaches optimize the collection of data at the cost of 

data correctness. However, they cannot replace individual readings and incur a greater risk of 

misunderstanding when the environment is not yet fully understood.      

The authors focus on incorporating long-term storage and search for spatio-temporal patterns 

in sensor data collected for data-intensive scientific applications [30]. The approach is based 

on constructing and storing multi-resolution summaries of data using wavelet transforms. 

Queries requiring a lowest-precision response are processed locally at the root; otherwise it is 

passed down the hierarchy to the nodes containing the relevant data at higher resolutions. To 

ameliorate the problem of limited storage, a progressive data aging strategy is used. 

DIMENSIONS approach also uses a multi-resolution hierarchical index that enables it to 

efficiently answer queries by hashing to the appropriate nodes. However, it does not support 

spatial queries such as GetNearest as it is not designed for storing location information. Many 

interesting challenges remain such as designing load balancing schemes to avoid the root of the 

hierarchy becoming a bottleneck, obtaining energy efficiency through compression, 

negotiating trade-off between compression benefit and query performance, distribution of 

processing at different levels of hierarchy and choosing good aging strategies.  

In [31] the authors consider a push-pull approach for executing one-shot precision-constrained 

approximate queries. They propose a generic two-tier data storage strategy where the sensor 

nodes store high-precision data and the base station stores approximation only.  The authors 

also describe node selection techniques for use in refresh strategies  for various types of queries. 

In [32], the authors focus on adaptively adjusting the precision of cached approximations to 

achieve the best performance in dynamic distributed environments. The main goal is to 

minimize network traffic, therefore an approach is used whereby exact values are stored at the 

local nodes and appropriate precision interval approximations are stored at the cache nodes 

where the queries are posted, there by trading-off performance gains and decreased precision.  

To  handle applications that require event detection with low latency, [33] proposes an 

architecture, called PRESTO, that exploits a feedback-based, model-driven push approach to 

support queries in an energy-efficient, accurate and low-latency manner. PRESTO comprises a 

higher tier of sensor proxies  and resources-constrained sensor nodes at the lower tier. A 

feedback-based model is constructed from correlations in the data acquired at each sensor. A 

sensor node at the lower-tier compares the sensed measurement against the model and pushes 

data to the proxy only when the difference between them exceeds a threshold. PRESTO 

assumes that each query specifies an error tolerance and a confidence interval. If the model 

prediction does not satisfy the query with the required precision, the proxy pulls actual 

measurements from the sensor nodes to process the query. The model parameters are 

periodically refined at the proxy, which cannot only result in an increase in the prediction 

accuracy but also reduce the number of pushes. The models currently used are temporal only.      

In [34], the authors present a sensor database architecture called StonesDB that exploits 

developments in flash memory technology and emphasizes on storage-centric query processing 

in sensor networks. The architecture comprises two tiers, like PRESTO. The proxy caches 

summaries of sensor data (e.g., low resolution wavelet-based summaries of images) as well as 

the data recieved from the sensors, to enable more energy-efficient querying of sensors. The 

queries are recieved at the proxy, that determines how to handle queries with minimal energy 

cost. The goal of StonesDB is to resolve the trade-off between long-term storage and loss of 
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query precision by designing strategies that should age out the least valuable data.  

TSAR [35] is an in-network two-tier storage architecture. The sensor nodes are responsible for 

the data storage, metadata is stored at the proxies. Each sensor periodically sends a summary of 

its data to a proxy. Each TSAR adopts a novel adaptive summarization technique leading to 

finer-grained summaries that are only sent if many false positives are observed, thereby 

allowing the energy cost of metadata updates to be traded off the number of false positives. The 

TSAR index metadata in proxies uses an interval skip graph that efficiently supports 

spatio-temporal and value queries. The distributed index maintained at the proxies, helps in 

transmitting simple queries to explicitly identified storage locations in the lower tier. Moreover, 

TSAR does not have in-network tier that enables processing queries to take advantage of data 

locality.      

DIFS [36] support efficient range queries on a single attribute while maintaining balanced load 

across nodes through the use of geographic hashing and spatial decomposition. DIFS 

constructs a geographical multi-rooted hierarchical range index that overcomes the problem of 

bottleneck as the root faced by most tree-based hierarchical approaches. Event information is 

stored at sensor nodes. In DIFS, event-to-sensor mapping is based on the K-D tree. DIFS’s 

biggest contribution is that it scales well to large-scale networks. Two of the main problems 

from which DIFS suffers includes: (1) construction of K-D tree which might result in the 

formation of orphan regions (i.e., regions with no sensor nodes); (2) storage hot-spot problem. 

The formation of storage hot spots due to irregular sensor deployment or non-uniform event 

distribution is a key research problem that needs to be addressed. The storage hot-spot problem 

occurs when many events are mapped to relatively small number of nodes. Which may result in 

the following: (1) delaying queries due to the contention at the storage and the surrounding 

nodes, (2) hot spots nodes may become bottlenecks, due to quickly consuming energy, because 

of the high load of query and storing sensor readings. To overcome the node failure problem, it 

divides the events that are hashed to the same location among multiple mirror nodes. DIFS 

performance has not yet been evaluated on an experimental platform that collects and 

aggregates real data into high-level events. It does not handle range queries involving more 

than one attribute and dynamic repartitioning when a distribution changes over time.       

KDDCS proposed in [38] use a distributed hashing index technique to solve range queries in a 

multi-dimensional space. KDDCS is proposed to solve the problems of storage hot-spots by 

avoiding formation of orphan regions and dynamically rebalancing the data region assigned to 

sensors. It presents a load-balanced storage scheme for sensor networks based on K-D tree, 

where nodes are assigned with bit-code identifiers that are related to their spatial location in the 

network. For constructing balanced K-D tree, a technique is presented which ensures that the 

number of sensor nodes on both parts of partition are equal during partitioning the 

geographical area. A K-D rebalancing algorithm is also presented to overcome the scenairios 

when events are not uniformally distributed.  

Chunyu Ai et. al. presented an index-based historical data processing scheme in [39], for static 

WSN with the assumptions: (1) each node is location aware, and (2) any point in monitored 

area is covered by at least one node. Under this scheme, a network is divided into multiple grid 

with equal number of nodes. A hierarchial index tree is constructed by selecting leaders at 

multi-level. To give each node a chance to serve as index node, a tree switching period scheme 

has been introduced, allowing for maintaining load balancing among sensor nodes. The leader 

node of each cell is responsible for calculating the minimum, maximum and average values for 

each attribute in the cell. At each update interval, the leader node of each cell sends the 

computed values of that interval to its parent node in the index tree. Other work related to 

handling the storage hotspot problem includes [40]. A mathematical model is presented to find 
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the optimal storage set of sensor nodes for the storage of events information. The base station is 

held responsible for computing the optimal storage set based on the prior information of the 

event and query distribution.  For accuracy, such approach requires that the base station must 

be equipped with the up-to-date information about the type of events, queries and other 

required network metadata.  

The authors presented a new storage scheme in [41]. This scheme stores the data in a node, 

close to the node where it is detected, and notifies the location information to the index node. 

The index node maintains an index list with all the nodes storing data for a given event type. 

An adaptive ring-based index scheme has been presented, which allows index nodes to form 

ring around the event region of particular type. The authors in [42] presented an adaptive 

storage switching policy which can dynamically choose between local storage, storage in the 

node closer to producer node, and external storage, depending on the the frequencies of user 

queries and events happening  ratio. In this work, the queries are generated from several mobile 

sinks and the network is divided into multiple grids, and each grid decides locally which 

storage scheme to apply. Moreover, the full communication model as well as the policies to 

switch from one storage mode to the other are also presented.  
4.2.5 Query Data using Precise Schemes 
The fourth model can be referred to as in-network storage and focuses on storing the data close 

to the location where it is generated, i.e., inside the nodes themselves, in flash memory and the 

queries are disseminated into the network for processing.       

In [43] geographic hash tables (GHT) are proposed as a data-centric storage [37] architecture; 

supporting aggregate and enumeration queries for event-driven applications. The approach 

allows data to be stored and accessed by name instead of sensor node ID. In a GHT, event 

names are hashed to geographic location where data associated with the events is stored. GHT 

uses geographical hierarchy to support load balancing. To avoid the problems of storage and 

communication that may arise due to storage hotspots, it divides the events that are hashed to 

the same location among multiple mirror nodes. Some issues that have not been investigated 

include varying node density and performance issues that may arise because of the 

non-uniformly distributed nodes.       

The comb-needle approach proposed in [44] is another in-network storage architecture that 

uses an adaptive push-pull technique. In this approach, sink does not know the location of 

information in advance, no hashing technique is used. The goal is to minimize the number of 

communications required to get a complete response to a global discovery query such as ”what 

locations have a temperature exceeding 90 degrees?”. It allows each sensor node to push its 

data to a certain neighbourhood (transmitted vertically in both directions like a needle of a 

certain length) while the query request is disseminated to a subset of the network in the form of 

a comb with horizontal teeth. When the query is posed to the network by the sink, it traverses 

the network along such a comb. Once the event nodes are detected the information is 

transmitted to the sink along the shortest path. This strategy is recommended when the average 

number of queries, is less than or equal to the average number of events.      

4.3 Storage Managers 

Matchbox [16] is a simple sensor node filing system that is packaged with the TinyOS [45] 

distribution. It is a flat filing system that supports only sequential read and writes. Files are 

unstructured and represented internally as sequence of bytes. Checksum reliability mechanism 

is used to verify the integrity for each page of the file during recovery from a system crash.  

Capsule [46] is fault-tolerant and provides more reliability by supporting check pointing and 

rollback of storage objects. Unlike, Matchbox, capsule filesystem, not only supports both read 
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and write simultaneously to a file, but also operate on multiple files at the same time. Capsule 

filesystem provides useful additional features with a better overall energy profile and 

performance than Matchbox.  It discusses data life efficiency but on some level of abstraction.    

Efficient log structured flash file system (ELF) [47], offers good reliability and wear leveling 

techniques for the flash file system. As compared to Matchbox, ELF offers more functionality,  

including random access, hierarchical directories and garbage.  

Blackbook [48] is a flash file system. It is a software product of industrial research by Rincon 

Research Corporation. The architecture and design of Blackbook is not well documented. Files 

are broken into a linked list of nodes, each node containing some part of the file. Blackbook 

reassembles the nodes and present them as a continuous file. Blackbook also has a Dictionary 

file which is accessed a little differently than a binary file.       

MicroHash [49], offers high performance indexing and searching capabilities by exploiting 

flash memory features such as asymmetric read/write and wear-out. MicroHash index is 

hash-based index structure designed for efficiently indexing temporal data for supporting 

value-based equality queries and time-based range and equality queries. The index structure 

has been designed for sensor nodes equipped with large flash memory, such as RIverside 

Sensors (RISE)  equipped with several MBs of flash memory.    

PIYA [50] storage manager designed for NAND-based flash memories allows to store the data 

sequentially in incremental fashion. For retrieving desired data, the table is constructed in the 

memory by reading the timestamps of every block. The procedure works by comparing the 

required timestamp with each page starting from the most currently written page. If the time 

stamp matches with any page then the required data items are checked. This procedure 

consumes long time and high energy, in case the flash memory is mostly/highly occupied. 

Varying Aggressive data Quality Access Reference (VAQAR) [51] is a storage management 

scheme, designed for motes with external large size NAND flash memory. In order to protect 

the critical data from deleting the storage manager allows to mark the data as undeletable by 

setting the byte in the first sector of each block containing critical data. The metadata regarding 

memory assigned to critical data, is stored in the form of map block. For efficiently retrieving 

desired data, the mapping table is constructed in memory from the metadata.  

Matchbox maintains a pointer to each page of file on the flash memory, therefore, require a 

very large footprint in memory to keep track of these pointers. ELF uses linked list to represent 

open file in RAM; this list can be quite long if the file is long or has been updated repeatedly. 

Which will ultimately result in performance and reliability issues. In order to improve the write 

performance and increase the longevity of flash memory small write cache is maintained for a 

file in order to consolidate the writes to the same page [47][46][48][49][50][51]. Although 

buffering increases energy efficiency but decreases reliability and allows for opening only 

limited number of files because of limited RAM.  Table 2 highlights the support for the 

features (listed in Section 3.7) by the current storage managers. 
 

Table 2. Features supported by Storage Managers 
  

 MatchBox Capsule ELF BlackBook VAQAR Piya Piyas 

Data Updation No NO Yes No No No No 

Device life efficiency NO Low Low Low No Low Low 

Performance and 

Reliability 

Low Medium Low Medium Low Low Low 

In-network data life 

efficiency 

No No No No Low Low Low 

Storage Efficiency No Low No No Low Low Low 

Searching Mechanism Low Medium Low  Medium low low low 
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 5. Future Research Scopes and Open Issues 

Sensor networks are by definition connected to the physical world and sensed data streams 

represent real world events. This implies the need for query processing to contend with near 

real-time issues. The stream is unbounded. This is made even more challenging by limited 

storage and the fact that storage management is expensive. To overcome the limited storage 

constraint, one approach is to apply a summarization technique founded on statistical methods 

or else to rely on compression methods to reduce storage needs. Thus, responses produced for 

queries that are posted on local stored data, are often approximate, instead of accurate, as they 

may be based on incomplete, or summarized, data. Which emphasizes that the spatio-temporal 

SNQP’s, should resolve the trade-off between long-term storage and loss of query precision by 

designing strategies that should age out the least recently used or the least valuable data.      

Since the nodes in a WSN and the communication edges formed by them map naturally to a 

finite set of points and a set of line segments, respectively, an algebraic approach to spatial 

analyses is possible. There exists work [13][14][15] that defines a discrete, and consistent 

geometric basis on which spatial data types (e.g., point, line, region) can be defined over WSNs. 

However, there are many environmental monitoring applications  where the addition of a 

temporal dimension to yield an in-network spatio-temporal query processing over WSNs 

would be beneficial. For supporting in-network spatio-temporal historical queries, there exists 

related research on storage managers, but there is still a need to develop more sophisticated 

storage managers that can fullfil all the requirements for supporting historical spatio-temporal 

queries.  

At the time of writing, no generally useful spatio-temporal query processing system has been 

proposed so far for sensor networks. Among the storage managers that are discussed in 

previous section, the implementations for Matchbox, Blackbook and Capsule are available. 

These implementations are functional on original motes (Mica, Mica2, Micaz) and currently 

there is no simulator that supports them. Programming WSNs require specialized knowledge, 

the scarcity of the resources puts a tight limit on code size, and debugging is cumbersome. 

Therefore, there is a need that current sensor network simulators provide support for 

simulating flash memory in order to test the effeciveness of the developed implementation over 

large scale network.  There are a lot of open research issues in the field of spatio-temporal 

historical query processing for example, problems related to designing of sophisticated storage 

manager, support for large size flash memory by sensor nodes, spatial and temporal 

load-balancing schemes, spatio-temporal indexing, distributed spatial analysis, 

spatio-temporal and historical algebra, spatio-temporal SNQP, Spatio-temporal historical 

query language, distributed algorithms for spatial, temporal and historical operators, 

spatio-temporal SNQP, etc. 

6. Conclusions   

This paper highlighted some of the major challenges that are associated with the 

spatio-temporal and spatio-temporal historical query processing over wireless sensor networks. 

It also presented a survey of the research on different issues arising from a desire to support 

spatio-temporal and historical queries from various research communities have been surveyed. 

The problem of designing a general-purpose, distributed query processor handling 

spatio-temporal queries has not yet been addressed by the research community. Some work has 

been done to solve the challenges related to query processing over historical data, but there is 

still significant unexplored research space in this field. 
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