
Communications for Statistical Applications and Methods
2023, Vol. 30, No. 2, 119–133

https://doi.org/10.29220/CSAM.2023.30.2.119
Print ISSN 2287-7843 / Online ISSN 2383-4757

Prediction of spatio-temporal AQI data

KyeongEun Kima, MiRu Mab, KyeongWon Lee1,a

aDepartment of Statistics, Seoul National University, Korea;
bDepartment of Statistics, Sungkyunkwan University, Korea

Abstract

With the rapid growth of the economy and fossil fuel consumption, the concentration of air pollutants has in-
creased significantly and the air pollution problem is no longer limited to small areas. We conduct statistical
analysis with the actual data related to air quality that covers the entire of South Korea using R and Python.
Some factors such as SO2, CO, O3, NO2, PM10, precipitation, wind speed, wind direction, vapor pressure, local
pressure, sea level pressure, temperature, humidity, and others are used as covariates. The main goal of this
paper is to predict air quality index (AQI) spatio-temporal data. The observations of spatio-temporal big datasets
like AQI data are correlated both spatially and temporally, and computation of the prediction or forecasting with
dependence structure is often infeasible. As such, the likelihood function based on the spatio-temporal model
may be complicated and some special modelings are useful for statistically reliable predictions. In this paper,
we propose several methods for this big spatio-temporal AQI data. First, random effects with spatio-temporal
basis functions model, a classical statistical analysis, is proposed. Next, neural networks model, a deep learning
method based on artificial neural networks, is applied. Finally, random forest model, a machine learning method
that is closer to computational science, will be introduced. Then we compare the forecasting performance of each
other in terms of predictive diagnostics. As a result of the analysis, all three methods predicted the normal level
of PM2.5 well, but the performance seems to be poor at the extreme value.

Keywords: AQI data, descriptive model, neural networks model, random effect, random forest,
spatio-temporal basis function, spatio-temporal big data

1. Introduction

The air pollution problem is frequently observed and can not be easily solved in most countries. In
recent years, South Korea is facing a big problem with a high concentration of air pollutants, mostly
the fine dust problem during the winter season. For simplifying public information about this air
pollution problem, the air quality index (AQI) is defined as a standardized formula for how polluted
the current air is and is used for data analysis. The main pollutants are fine particles, respirable
particulate matter, sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide.

Many researchers have analyzed the AQI data. Baran (2019) predict the air quality index (AQI) by the
extreme learning machines (ELM) algorithm. Yue and Li (2020) analyzed the weights of air pollutants
on AQI and the interaction among them. Jiang (2021) calculated the correlation between six factors
such as PM2.5, PM10, SO2, NO2, O3, and CO concentration using the Pearson correlation coefficient,
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and analyzed them using multiple linear regression analysis. Also, Wang et al. (2022) presents an
AQI prediction model based on convolution neural networks (CNN) and improved long short-term
memory (ILSTM), named CNN-ILSTM.

In this paper, we apply three prediction models to the AQI data and compare their performances using
various statistical measures. The goal of the three models is to predict or forecast PM2.5 in South Korea
using the covariates. The first model is the random effects model with spatio-temporal basis functions.
This model is the most classical method of the three models for obtaining and inferring information
from spatio-temporal data based on statistical theory. The second model is neural networks model
which is applicable to spatio-temporal data. The neural networks model has the advantage of being
able to learn complex patterns of the data. Finally, we consider the random forest model. The random
forest model often used in the field of artificial intelligence. The random forest is a supervised learning
algorithm often considered one of the best off-the-shelf machine learning algorithms for classification
and regression. It is robust to outliers and known to be free from overfitting problems (Herrera et al.,
2019).

For analysis, 50 training datasets and 50 test datasets are provided. The three methods introduced
above are then performed on each dataset to obtain the prediction values at the given spatio-temporal
locations. The methods proposed in this paper are implemented in R and Python, and the source
code is available from GitHub repository (https://github.com/kke712/Prediction-of-ST-
AQI-data).

The paper is organized as follows. In Section 2, we describe the basic idea of the methods and illustrate
the approaches. This is followed by explanations for three different models. Section 3 provides an AQI
data description and analysis results. Some discussions are given in Section 4.

2. Methods

In this section, we describe three prediction models considered in this paper.

2.1. Random effects with spatio-temporal basis functions

In the AQI dataset, observations are spatio-temporal data that are closely located with each other
and have a dependence structure in both space and time. We adopt a descriptive way to handle the
spatio-temporal dependence model whose basic structure follows models in Wikle et al. (2019).

In the descriptive spatio-temporal statistical model, we assume the additive structure. This means the
dependent variable can be decomposed into the latent spatio-temporal process and measurement error.
The true process can be considered as the spatio-temporal fixed effect due to the covariates plus the
random process which is spatio-temporally dependent. We call this a descriptive approach since this
method describes the dependency of the random process.

The descriptive model has the advantage of a simple decomposing structure, but the exact likelihood
of this descriptive method becomes unstable and infeasible in the big-n problem since it involves
computing quadratic forms and determinants associated with a large covariance matrix (Bakar and
Kokic, 2017). This problem can be alleviated by the basis function approach.

In the spatio-temporal random effect model, we assume a process term with dependence and an ad-
ditional measurement error term. In particular, the process is decomposed into fixed effect terms and
random process terms. Assume that at each time ti ∈ {t1, . . . , tT } there are ni := nti observations.
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The spatial locations at time points ti’s are given as {si1, . . . , sini }. The observation is then represented
by {Z(t, s) : t ∈ A1, s ∈ A2}, where the time index t is in the temoral index set A1 of interest (in
our case, one-dimensional real line) and s is location in the spatial area A2 (in our case, a subset of
two-dimensional Euclidean space). Let

Z =
(
Z (t1, s11) ,Z (t1, s12) , . . . ,Z

(
t1, s1n1

)
, . . . ,Z (tT , sT1) , . . . ,Z

(
tT , sTnT

))′
be the vector of the dependent variable such as PM2.5. Note that the number of irregular spatial
observations can be different at each time. Recall that the main goal is to find a statistically optimal
prediction value for a latent random spatio-temporal process at some new space-time location (t∗, s∗).
If t∗ < tT , it becomes a smoothing problem, while if t∗ > tT it is a forecasting problem.

Suppose that the data can be represented in terms of the potential spatio-temporal process and a
measurement error:

Z
(
ti, si j

)
= Y

(
ti, si j

)
+ ε

(
ti, si j

)
, j = 1, . . . , ni; i = 1, . . . ,T,

where the error {ε(ti, si j)} is iid mean-zero measurement error with the variance σ2
ε . We assume that

this error term is independent of Y . In other words, the data are noisy observations of the latent process
Y in a finite set of locations.

We further assume that the latent process at the time t and the location s is given by

Y (t, s) = µ (t, s) + η (t, s) , (2.1)

where µ(t, s) is the non-random mean process, and η(t, s) is zero-mean spatio-temporal random pro-
cess. We also assume µ(t, s) = x(t, s)′β, where x(t, s) is a observed covariates at time t and location s,
and β is an unknown p-dimensional vector of the corresponding coefficients.

The best linear unbiased predictor, Ŷ(t∗, s∗), that minimizes the mean square prediction error (MSPE)
E(Y(t∗, s∗) − Ŷ(t∗, s∗))2 is called the kriging predictor. We further assume that the underlying process
is a Gaussian process and the error term follows a Gaussian distribution. A stochastic process is
called a Gaussian process if its finite dimensional distributions are multivariate normal distributions.
It is denoted by Y(`) ∼ GP(µ(`), c(·, ·)), where µ(`) = E(Y(`)) is a mean function and c(`, `′) =

cov(Y(`),Y(`′)) is a covariance function, and `, `′ are the locations in the area A (in our case, space-
time locations).

In the spatio-temporal kriging, time is considered as an additional different dimension. The covariance
function is the covariance between the two space-time locations. Let cov(Y) ≡ Cy = Cη, cov(ε) ≡ Cε ,
and cov(Z) ≡ Cz = Cy + Cε . Then the joint distribution of Z and Y(t∗, s∗) where (t∗, s∗) is a new
space-time location is given by[

Y(t∗, s∗)
Z

]
∼ GP

([
x(t∗, s∗)′

X

]
β,

[
c∗∗ c∗′

c∗ Cz

])
,

where c∗′ ≡ cov(Y(t∗, s∗), Z), c∗∗ ≡ var(Y(t∗, s∗)), N ≡
∑T

i=1 ni and X is N × (p + 1) design matrix.

Since the joint distribution of Y(t∗, s∗) and Z is a multivariate normal distribution, the conditional
distribution of Y(t∗, s∗) is given by Johnson and Wichern (2013)
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Y (t∗, s∗) | Z ∼ GP
(
x (t∗, s∗)′ β + c∗

′

C−1
z (Z − Xβ) , c∗∗ − c∗

′

C−1
z c∗

)
.

The kriging predictor is the mean of the above conditional distribution when the processes are Gaus-
sian. That is, Ŷ(t∗, s∗) = x(t∗, s∗)′β + c∗′C−1

z (Z − Xβ). This means that the kriging predictor can be
decomposed into the residual term and the marginal mean of the new location. These residuals are
weighted as much as c∗′C−1

z .

Since β is unknown, its estimator needs to be used in the kriging predictor and the generalized least
square estimator can be used. Thus, the predictor becomes

Ŷ (t∗, s∗) = x (t∗, s∗)′ β̂gls + c∗
′

C−1
z

(
Z − Xβ̂gls

)
,

where β̂gls = (X′C−1
z X)−1X′C−1

z Z. This is called the universal kriging predictor.

In practice, Cz, c∗ and c∗∗ are also unknown. One simple approach is to parameterize the covariance
function and use the maximum likelihood estimator to construct Ĉz, ĉ∗ and ĉ∗∗. On the other hand, it
is difficult to handle the spatio-temporal covariance matrix obtained from parametrization of the valid
covariance function when the sample size is large.

This problem can be dealt with by introducing spatio-temporal basis functions. That is, the process
model (2.1) can be rewritten in terms of fixed effects β and random effects {γk : k = 1, . . . , nγ},

Y (t, s) = x (t, s)′ β + η (t, s) = x (t, s)′ β +

nγ∑
k=1

φk (t, s) γk + ν (t, s) .

Here, {φk(t, s) : k=1, . . . , nγ} is a specified spatio-temporal basis function corresponding to the location
(t, s) and ν(t, s) captures a fine scale spatio-temporal random effect that can not be represented by the
basis function.

Assuming γ ≡ (γ1, . . . , γnγ )
′ ∼ GP(0,Cγ) where nγ << N, the N-dimensional vector Y is given by

Y = Xβ +Φγ + ν, (2.2)

where Φ is the spatio-temporal basis function matrix whose kth column is the kth basis function,
φk(·, ·). Also, we assume ν ∼ GP(0,Cν) and ν has the same spatio-temporal order as Y. The marginal
distribution of Y is GP(Xβ,ΦCγΦ

′+Cν), where Cy = ΦCγΦ
′+Cν. The spatio-temporal basis function

explains the dependency of this model. The advantage of this method is that the high-dimensional
problem now only focuses on nγ of random effects, in that the inverse matrix is then nγ- dimensional
matrix. Assuming the model (2.2) and V ≡ Cν + Cε , Cz = ΦCγΦ

′ + V. By the well-known Sherman-
Morrison-Woodbury matrix identity (Searle, 2017), the inverse matrix can be calculated by

C−1
z = V−1 − V−1Φ

(
Φ′VΦ + C−1

γ

)−1
Φ′V−1.

If we assume that V is a diagonal matrix, this inverse matrix is easy to calculate. Since a calculation
of a matrix C−1

γ is low-dimensional, computational costs can be significantly reduced.

The choice of basis function is influenced by the type of the residual structure and random effects.
The tensor product basis function is considered in our case, where the spatio-temporal basis function



Prediction of spatio-temporal AQI data 123

X|M

FC512

Batch Norm.

ReLU

FC512

Batch Norm.

ReLU

FC512

Batch Norm.

ReLU

X1

X1|X|M

FC512

Batch Norm.

ReLU

FC512

Batch Norm.

ReLU

FC512

Batch Norm.

ReLU

X2

X4|X|M

FC512

Batch Norm.

ReLU

FC512

Batch Norm.

ReLU

FC512

Batch Norm.

Softplus

Y

. . .

. . .

Figure 1: Structure of the neural networks model. ‘FC’ means fully connected layer and ‘Batch Norm.’ means
batch normalization layer. X1 | X2 is a concatenated matrix of two matrices X1 and X2.

is the product of the spatial basis function and the temporal basis function. We let nγ = 2664, where
we use a bisquare basis function for the spatial basis function and a Gaussian basis function for the
temporal basis function. In particular, the spatial basis function is generated by two resolutions. The
coefficient γ of each resolution is assumed to be independent, and the covariance within the resolution
decreases exponentially as the distance between the centers of the basis function increases. This model
is implemented in R statistical software.

2.2. Neural networks model

The neural network is a machine learning technique that combines linear transformations and multiple
nonlinear transformations to analyze the complex structure of data. The neural network is powerful
especially when dealing with unstructured data, from visual data to natural language processing. With
the neural network, the end-to-end learning is possible based on the input and output alone, without
explicit intermediate steps. These properties have played important roles in the rapid development of
numerous artificial intelligence applications.

We consider a simple fully connected network model. To deal with missing values in the dataset, we
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(a) O3 (b) NO2

(c) temp (d) humidity

Figure 2: Daily variation trend of O3, NO2, temp, and humidity. This shows the daily trend of variables at the
particular point with latitude 35.8803 and longitude 128.5625 from 2020-05-15 to 2020-05-29. We draw the
lines in different colors according to the date. Since it is hourly data, 24 time points are used for each line. The

x-axis is time and the y-axis is the value of each variable.

introduce a mask matrix M as in Yoon et al. (2018). The matrix M has a value of 1 if the data is
observed or 0 otherwise and we use the input matrix which is concatenated matrix of the data matrix
and mask matrix.

A vanishing gradient problem arises when training neural networks model with gradient-based learn-
ing methods and backpropagation.The problem is that as the depth of the model increases, the gradient
becomes smaller and it becomes difficult to change the value of the parameter. In the worst case, the
model is no longer trained. To avoid the vanishing gradient problem, we adopt several techniques.
We use a rectified linear unit (ReLU) function ReLU(x) = max{0, x} as activation functions (Nair
and Hinton, 2010) and the batch normalization layers (Ioffe and Szegedy, 2015), which include the
process of adjusting the mean and variance in the network, to enable stable learning. In addition, we
build a model with skip connection as in VGGNet (Simonyan and Zisserman, 2014). That is, we let
the model use input data with the latest output periodically. For the last activation function, we use a
softplus function Softplus(x) = log(1 + exp(x)). Figure 1 shows the structure of the model.

2.3. Random forest

A decision tree introduced by Quinlan (1986) is a supervised learning method to solve classification
and regression problems. The decision tree consists of nodes and all data points split into child nodes
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Figure 3: The figure of the variable importance of the RF model. The left plot is computed using the mean
decrease in accuracy and the right plot is computed using the mean decrease in node impurity.

until arriving at terminal nodes through decision rules in the tree structure. This method is simple and
convenient, but it is unable to generalize because the decision rules are set randomly and only use one
tree to classify or predict.

Leo (2001) introduced random forest to solve this problem. The random forest is a combined method
randomization skills with decision trees. More precisely, it makes an inference about the popula-
tion using independent decision trees through randomization skills such as bagging or random node
optimization. The random forest is more stable than a naive decision tree method and has more gen-
eralization power. The random forest is an ensemble model for the prediction or classification of
response variables by combining many small trees obtained by applying the decision tree method to
the bootstrapped sample. It has a good prediction performance despite its simplicity.

Variable importance is another strength of the random forest model (RF model). The RF model nat-
urally provides variable importance measures when implemented to solve classification or regression
problems. The RF model offers variable selection using variable importance moreover, can explain
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Table 1: The table of the variables

Name Description Source Unit
SO2 Sulfur dioxide AirKorea ppm
CO Carbon monoxide AirKorea ppm
O3 Ozone AirKorea ppm
NO2 Nitrogen dioxide AirKorea ppm
PM10 Particulate Matter 10 (PM10) AirKorea µg/m2

PM2.5 Particulate Matter 2.5 (PM2.5) AirKorea µg/m2

prec Precipitation KMA mm
windspeed Wind speed KMA m/s

winddirection Wind direction KMA arc°
vaporpres Vapor pressure KMA hPa
Lpres local pressure KMA hPa
Bpres Sea level pressure KMA hPa
temp Temperature KMA °C

humidity Humidity KMA %
hoy An hour of the year representing seasonality. hours
chours The cumulative hours representing long-term trends. hours
lat Latitude °
log Longitude °

Names, brief descriptions, sources, and units of the variables are presented.

features, not like the other tree models. There are many ways to compute variable importance mea-
sures such as MDI (mean decrease in impurity) importance, permutation importance, and drop column
importance. In this paper, the permutation importance is used which uses out-of-bag error. The detail
of the method is given in in (Leo, 2001), and the result of variable importance is given in the Figure 3
of the Section 3.

The random forest is used in many fields and has an implementation in R, the randomForest pack-
age. The random forest doesn’t have an implementation for the spatio-temporal data. We add two geo-
graphical variables(lat,log) and two temporal variables (hoy and chours) to reflect spatio-temporal
characteristics of the data. Details are given in Section 3.1.

3. Experiments

3.1. Data

For the dataset for prediction, we combine two datasets: The air pollution data provided by AirKo-
rea(https://airkorea.or.kr) and the meteorological data such as temperature and humidity from
the Korea meteorological administration (KMA, https://www.kma.go.kr/kma). Both datasets were
collected hourly.

A difficulty in combining the two datasets is that the observatories for air pollution data and mete-
orological data are different. To merge the two datasets from different sources, meteorological data
observation values at air pollution data stations were interpolated through the inverse distance weight-
ing (IDW) interpolation technique. We introduce some variables to supplement spatial and temporal
elements as in Hengl et al. (2018). To represent temporality, we use two variables hoy, an hour of
the observation point, and chours, the elapsed time since the first observation point 2018-01-01
00:00:00 (yyyy-mm-dd-hh:mm:ss) These variables mean an hour of the year representing season-
ality and the cumulative hours representing long-term trends, respectively. We also use geographical
variables lat (latitude) and log (longitude) to represent spatial elements. The list of variables is given
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in the Table 1.

We use the data from April to May 2020 for model fitting. For performance comparison, we select 50
points of time randomly from May 1st to May 31st, 2020. For each time point, data from the time point
to 11 hours later were used as test data, and data from 2 weeks before to the time point were used
as training data. For instance, if a time point 2020-05-04-08:00:00 selected, the corresponding
training data is the data observed between 2020-04-20-08:00:00 and 2020-05-04-07:00:00,
and the test data is the data observed between 2020-05-04-08:00:00 and 2020-05-04-19:00:00.

We assume that the PM2.5 at specific time point can be inferred from other meteorological variables
over the preceding 12 hours. For every model, the explanatory variables were all variables except
PM2.5 for 12 hours, and the response variable was PM2.5 in the last hour. For example, to predict PM2.5
at 2020-05-04-15:00:00, we use all variables but PM2.5 such as SO2 from 2020-05-04-03:00:00
to 2020-05-04-15:00:00 as explanatory variables. In a forecasting problem, since the future time
values of explanatory variables are unknown, we replace the values of explanatory variables with the
values of the observed data. For this, we set this replaced value as close to the actual value as possi-
ble. Specifically, O3, NO2, temp, and humidity have a daily trend as shown in Figure 2. In this case,
we replace the values in the test data with the values of the train data from the day before. Since
other variables except O3, NO2, temp, and humidity have no daily trend, these are replaced by the
most recent observations. For instance, given train data observed between 2020-04-20-08:00:00
and 2020-05-04-07:00:00, if we want to predict PM2.5 at 2020-05-04-08:00:00, the explana-
tory variables O3, NO2, temp, and humidity at 2020-05-04-08:00:00 are replaced by the the val-
ues of 2020-05-03-08:00:00. The other variables except these four are replaced by the values of
2020-05-04-07:00:00. All explanatory variables are standardized using the mean and standard de-
viation of each column of the training data.

3.2. Results

In this section, we predict PM2.5 using the three methods discussed in Section 2. We fit the models
using the training set and test the models by forecasting with the test set. We compare the prediction
results of 1-step, 3-step, and 6-step ahead forecast for each methodology.

In the descriptive spatio-temporal basis function model (ST model), the EM algorithm is used to find
the maximum likelihood estimates. We assume that the hyperparameter σε is the standard error of
the OLS regression. In the ST model, the spatial correlation is reflected as the coordinates. In order
to compare under the same criteria as other models, two temporal variables (hoy and chours) also
used as covariates. For the neural networks model (NN model) described in Figure 1, the width of
each layer is 512, and the neural networks model is stacked so that there are 3 skip connections. We
fit the model with the Python PyTorch package (Paszke et al., 2019) and on a GPU server with one
Nvidia RTX 3090. We used the AdamW optimizer (Loshchilov and Hutter, 2017) to train the neural
networks model, and the CosineAnnealingWarmRestarts (Loshchilov and Hutter, 2016) scheduler
to improve performance. The starting learning rate was 0.005, the epoch was 500, and the batch size
was 1024.

In the RF model, we use the default value for hyperparameter settings in the R-package, randomFores
t. The RF model provides variable importance naturally and can be implemented in R as mentioned
in Section 2.3. Figure 3 is the variable importance of the RF model. There are two types of importance
measures. The left plot’s measure is the mean decrease in accuracy and the right plot’s measure is the
mean decrease in node impurity. The left plot and the right plot show that PM10 is the most important
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Figure 4: Plot between prediction and real value of PM2.5 using four methods a linear regression model as a
control method, the ST model, the NN Model and the RF model from top to bottom. The linear regression
model is named ‘lm’. The left column of the plot is 1-step forecasting. The middle column of the plot is 3-step

forecasting. The right column of the plot is 6-step forecasting.

variable. Practically, the train and test datasets are 50. Thus, we show just the first train dataset’s
variable importance plot for demonstration. The rest of the other dataset’s variable importance rank is
similar to Figure 3, not precisely numerically identical.

In Figure 4, the scatter plots between the predicted values and the actual observations are given. Each
row of Figure 4 is for a linear regression model, the ST model, the neural networks model, and the RF
model, respectively. The linear regression model is the control method to compare with other models
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Figure 5: Boxplots of RMSE using four methods. There are three plots. The left plot is 1-step forecasting, the
middle one is 3-step forecasting, and the right one is 6-step forecasting. The step of forecasting is mentioned
above each plot. In each plot, there are four boxplots of RMSE using four models. The models are a linear
regression model, the ST model, the NN model and the RF model. The linear regression model is used as control

method and named ‘lm’.

Table 2: (50%, 75%) quantile of RMSE using four methods

Method (50%, 75%) & +1h (50%, 75%) & +3h (50%, 75%) & +6h
lm (6.9495, 9.1587) (7.6195, 9.4762) (9.1246, 11.0667)
ST (8.6712, 10.6362) (9.2574, 10.8311) (10.3301, 12.2183)
NN (7.3651, 9.2230) (8.4174, 9.6568) (9.2467, 11.0664)
RF (4.3359, 5.0957) (6.6513, 8.0957) (8.6188, 9.8213)

The methods are a linear regression model named ‘lm’, the ST model, the NN model and the RF model from top to
bottom. Columns of table mean forecasting step. The second column is 1-step forecasting, the third is 3-step forecasting,
and the fourth is 6-step forecasting form left to right.

and named ‘lm’ in this paper. The linear model implements in R, using the lm function. The columns
of Figure 4 show 1-step, 3-step, and 6-step ahead forecast from the left to the right. The straight
lines in Figure 4 represent y = x. The closer each point is to the straight line, the better prediction
performance is. The ST model tends to overestimate response variables compared with other methods,
and the predicted values of PM2.5 get smaller when the forecast is further away in time. Namely, the
ST model predicts values by pulling them toward the mean. The predicted values using the NN model
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Table 3: The range of categories based on the rule which is provided by Korea’s Ministry of the Environment

Range Category

PM2.5 < 16 good
16 ≤ PM2.5 < 36 normal
36 ≤ PM2.5 < 76 bad

76 ≤ PM2.5 very bad

Table 4: The table of specificity uses four methods a linear regression model, the ST model, the NN model,
and the RF model according to the forecasting step

Step Method
Category

Good Normal Bad Very bad

+1h

lm 0.6917 0.8399 0.0967 0
ST 0.6330 0.7054 0.2620 0
NN 0.7390 0.6852 0.1511 0
RF 0.8621 0.8488 0.5677 0.1471

+3h

lm 0.6527 0.7994 0.0930 0
ST 0.6114 0.6890 0.2628 0
NN 0.6847 0.6545 0.1205 0
RF 0.7669 0.7619 0.3886 0

+6h

lm 0.5915 0.7352 0.0685 0
ST 0.5602 0.6651 0.1954 0
NN 0.6453 0.5997 0.0663 0
RF 0.6618 0.6920 0.2709 0

are widespread in terms of the straight line, and they get more widespread as the forecasting step is
further. However, the values are almost on a straight line not like the ST model. The RF model’s
prediction performance for 1-step forecasting is the best because points are located near the straight
line while it is getting widespread from the left to the right in the fourth row of Figure 4. Indeed, it
can be seen that the difference in the spread is the most severe among the three models.

To compare the performance of three prediction methods, we use

RMSE =

√
1
N

∑
(yi − ŷi)2

as a performance measure. Figure 5 displays boxplots of RMSE and Table 2 shows (50%, 75%) quan-
tile of RMSE. In Figure 5, each plot means 1-step, 3-step, and 6-step forecasting from left to right.
Also, each plot has four boxplots using the linear regression model, the ST model, the NN model, and
the RF model from left to right. The NN model’s RMSE is larger than the linear regression model
though it’s quantile range is more narrow than the control method. The RF model is the best in terms
of RMSE and the interquartile range of it. The RMSE values of the linear regression model and
the three methods increased by forecasting further step. Still the NN model’s RMSE maintain short
interquartile range, and the RF model has the smallest RMSE value.

It is primary to predict what category PM2.5 is belong to for weather forecast, although it is also
essential to predict exact value. For this reason, the PM2.5 values are divided into categories based on a
rule and the performance compared. In this paper, we divide predicted values into 4 categories: Good,
normal, bad, and very bad based on the rule which is provided by Korea’s Ministry of the Environment
and then evaluate the classification prediction performance. The rule is given in Table 3.

Table 4 shows specificity value using the control model and the three models. Specificity is the ratio
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Table 5: The table of F1 score using four methods according to forecasting step

Step Method
Category

Good Normal Bad Very bad

+1h

lm 0.7295 0.7697 0.1592 0
ST 0.6389 0.6851 0.3124 0
NN 0.6822 0.6939 0.2375 0
RF 0.8434 0.8463 0.6556 0.2564

+3h

lm 0.6807 0.7395 0.1527 0
ST 0.6177 0.6718 0.3037 0
NN 0.6323 0.6625 0.1950 0
RF 0.7469 0.7608 0.4601 0

+6h

lm 0.6139 0.6798 0.1121 0
ST 0.5757 0.6373 0.2330 0
NN 0.5916 0.6095 0.1107 0
RF 0.6519 0.6802 0.3417 0

of real category to correctly predicted category. It is one of the measures to compare the performance
when the response variable is categorical variable. Table 4’s first column means forecasting step.
The step goes further from top to bottom. Table 4’s method column means the control model and all
three models, and category column displays the specificity values according to all four categories. For
instance, when 1-step forecasting in good category using the ST model, 63 percent of the sample in
the good category is predicted correctly. The ST model’s specificity is not greater than other methods
though not different according to the forecasting step. The NN model can not classify the bad category
still provide good performance with the good and normal categories. According to the Table 4, the RF
model is good at prediction compared with the other two methods notably, when 1-step forecasting
it classifies the very bad category. All of the model’s ratios are getting worse when the forecasting
step is further also when the category goes to ‘very bad’. Above all they can not detect the very bad
category except the RF model when 1-step forecasting.

It is insufficient to use only specificity when assess the categorical response variable’s performance.
Accordingly the F1 score (Powers, 2020) is used to analyze classification performance numerically.
The F1 score is the harmonic average between precision and recall called specificity. Moreover it is
valid to use the F1 score because the PM2.5 data is imbalanced. Table 5 has the same structure as Table
4 but not the value. The ST model’s F1 score is not bad as well as not that different according to the
forecasting step. Moreover, it is good enough in the bad category for 3-step and 6-step forecasting
compared with the RF model which is the best performance. The NN model’s F1 score also does not
change significantly according to the forecasting step. The RF model has the largest F1 score in Table
5, and remarkably offer classification of the very bad category. Indeed all four models decreased the
F1 score when predicting further steps.

4. Discussion

In this paper, we proposed three prediction methods and related algorithms for AQI data. For the
spatio-temporal model, it is common to assume that observations are spatio-temporally correlated
over the study locations. To incorporate this correlation and curse of dimensionality, the random
forest model, random effects with spatio-temporal basis functions model, and neural networks model
are considered. These methods can be applied to interpolate the prediction of the new space-time
location.
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The results show that the ST model tends to overestimate PM2.5 compared with the other methods. In
Section 3, the RF model has the best performance among the three methods. That’s because of the RF
model’s robustness to noise and overfitting (Leo, 2001) which is mentioned in Section 1. However,
we can see that the variance of the prediction increases over time. This is not surprising, because
prediction performance decreases as time moves away from the training set in all of the proposed
methods. Also, Tables 4 and 5 suggest that the proposed estimates are well predicted in the normal
stage, but the prediction performance decreases as it goes to the extreme stages.

The descriptive spatio-temporal model with basis functions is based on the random effect model with
spatio-temporal basis functions. Its main goal is to reduce the computation costs due to the large
covariance matrix. On the other hand, this method has a limit when applied to real data. For example,
the structures of the basis function have to be chosen well. For the spatial process model, this choice
is usually not that critical since the structures of the basis function do not significantly affect spatial
dependence. However, if we consider the spatio-temporal model, the decision of the basis functions
leads to different results. In addition, the descriptive model also tends to regress to the average value
even at the extreme concentration of PM2.5. This seems to be because the model setting itself is based
on the residual of the regression equation.

The neural networks model have a more complex form than existing machine learning models. This
means that the model is prone to be overfitted, and these problems become frequent when the training
data size is small. During model training, the RMSE on the training data had a very small value.
However, as the results above, the performance of the neural networks model is inferior to that of other
models. To solve this problem, we can consider increasing training data size or applying regularization
techniques.

The random forest model has two limits. First, random forest is hard to be implemented when the
categorical predictor has too many categories. So the number of categories should be reduced to use
the random forest as a preprocessing in that data structure. Second, a dataset for prediction must
have values of covariates used to learn a random forest. This is the difference between the neural
networks model introduced in Section 2.2. The random forest needs the values of covariates for
forecasting, unlike the neural networks model. Therefore, the prediction performance is affected by
how the covariate’s values are set. Since the purpose of our study is to efficiently predict spatio-
temporal big data rather than spatio-temporal interpolation, spatial and temporal effects are simply
assumed to be fixed effects. However, it can also be considered as the random effects with spatio-
temporal interaction term. Therefore, this paper can be used as the base for more complex modeling
of AQI data in the future.

In general terms, our analysis results indicate that the proposed methods used in AQI data are suc-
cessful in predicting the normal concentration but still have problems such as under/overestimation.
We suggest that the forecasting performance derived by the three methods will be improved if more
sufficient observations for more periods of time are used when calculating. We also note that the three
methods in Section 2 are not completely free from the computation costs. Some possible approaches
to address these issues have to be developed.
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