• 제목/요약/키워드: Spatial scan statistics

검색결과 19건 처리시간 0.019초

Categorical Data Analysis by Means of Echelon Analysis with Spatial Scan Statistics

  • Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권1호
    • /
    • pp.83-94
    • /
    • 2004
  • In this study we analyze categorical data by means of spatial statistics and echelon analysis. To do this, we first determine the hierarchical structure of a given contingency table by using echelon dendrogram then, we detect candidates of hotspots given as the top echelon in the dendrogram. Next, we evaluate spatial scan statistics for the zones of significantly high or low rates based on the likelihood ratio. Finally, we detect hotspots of any size and shape based on spatial scan statistics.

  • PDF

Detection of Hotspots for Geospatial Lattice Data

  • Moon, Sung-Ho;Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권1호
    • /
    • pp.131-139
    • /
    • 2006
  • Statistical analyses for spatial data are important features for various types of fields. Spatial data are taken at specific locations or within specific regions and their relative positions are recorded. Lattice data are synoptic observation covering an entire spatial region, like cancer rates corresponding to each county in a state. The main purpose of this paper is to detect hotspots for the region with significantly high or low rates. Kulldorff(1997) detected hotspots based on circular spatial scan statistics. We propose a new method to find any shapes of hotspots by use of echelon analysis with spatial scan statistics.

  • PDF

Optimizing the maximum reported cluster size for normal-based spatial scan statistics

  • Yoo, Haerin;Jung, Inkyung
    • Communications for Statistical Applications and Methods
    • /
    • 제25권4호
    • /
    • pp.373-383
    • /
    • 2018
  • The spatial scan statistic is a widely used method to detect spatial clusters. The method imposes a large number of scanning windows with pre-defined shapes and varying sizes on the entire study region. The likelihood ratio test statistic comparing inside versus outside each window is then calculated and the window with the maximum value of test statistic becomes the most likely cluster. The results of cluster detection respond sensitively to the shape and the maximum size of scanning windows. The shape of scanning window has been extensively studied; however, there has been relatively little attention on the maximum scanning window size (MSWS) or maximum reported cluster size (MRCS). The Gini coefficient has recently been proposed by Han et al. (International Journal of Health Geographics, 15, 27, 2016) as a powerful tool to determine the optimal value of MRCS for the Poisson-based spatial scan statistic. In this paper, we apply the Gini coefficient to normal-based spatial scan statistics. Through a simulation study, we evaluate the performance of the proposed method. We illustrate the method using a real data example of female colorectal cancer incidence rates in South Korea for the year 2009.

Categorical Data Analysis by Using Spatial Scan Statistics and Echelon Analysis

  • 문승호;신재경
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2004년도 춘계학술대회
    • /
    • pp.183-194
    • /
    • 2004
  • 본 연구에서는 공간 검색 통계량(spatial scan statistics)과 에셜론 해석법을 이용한 범주형 자료분석을 다룬다. 이를 위해 우선, 에셜론 덴드로그램을 이용하여 주어진 분활표의 계층적 구조(hierarchical structure)를 결정하고서 이로부터 핫스팟(hotspot)의 후보를 검출한다. 다음으로 우도비(likelihood ratio)를 기초로 유의하게 높거나 낮게 나타나는 지역에 대한 공간 검색 통계량을 산출한다. 마지막으로, 이 통계량을 바탕으로 핫스팟을 검출한다.

  • PDF

공간현상 분석을 위한 GIS 기반의 공간통계적 접근방법에 관한 고찰: 공간 군집지역 탐색을 위한 공간검색통계량의 실증적 사례분석 (A Study on Spatial Statistical Perspective for Analyzing Spatial Phenomena in the Framework of GIS: an Empirical Example using Spatial Scan Statistic for Detecting Spatial Clusters of Breast Cancer Incidents)

  • 이경주;권일
    • Spatial Information Research
    • /
    • 제20권1호
    • /
    • pp.81-90
    • /
    • 2012
  • 지리적 공간상에서 발생하는 대부분의 현상은 서로 인접한 곳에서 유사한 값을 가지는 특성이 있다. 이는 공간자기상관성과 관련이 있으며 공간분석의 존재 이유를 나타내는 개념이다. 또한 지리적 공간상에서 위치에 따라 값의 분포가 다양한 패턴을 보이게 된다. 이러한 패턴은 공간적 변이를 내포하고 있다. 즉, 특정 위치에서 항상 같은 값을 관찰할 수 있다고 단정하기는 불가능하기 때문에 이러한 변이는 본질적으로 확률론적 특성을 지닌다. 이러한 공간자료의 특성들을 무시하고 일반적 통계분석 등을 수행할 경우 공간자기상관성으로 인하여 통계분석에서 가정하는 자료 값들 간 독립성이 위배되고 분석결과는 왜곡될 가능성이 크다. 그러므로 공간자료 분석을 위해서는 공간자기상관성과 확률론적 변이를 적절하게 반영할 수 있는 수단이 필요하다. GIS는 공간적 위치정보를 처리하는데 적합하고 공간통계학은 공간적 변이를 다루는데 유용하다. 따라서 GIS를 기반으로 공간통계학을 통합하는 분석방식은 공간자료의 특성들을 고려하여 유의미한 분석을 하기에 적합한 장점이 있다. 본 연구의 목적은 공간자료 분석에 있어서 공간통계학과 GIS를 결합하는 접근방식의 유용성을 논의하고 실증적 사례분석을 통하여 구체적 활용성을 살펴보는 것이다. 이를 위하여 공간통계학을 주요 방법론으로 활용하는 공간역학(spatial epidemiology) 분야를 예시적으로 살펴보았다. 구체적으로는 공간검색통계량을 이용하여 미국 Erie 및 Niagara 카운티(New York 주) 내의 유방암 발생의 공간적 군집패턴 분석 논의하였다.

Detection of Hotspots on Multivariate Spatial Data

  • Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1181-1190
    • /
    • 2006
  • Statistical analyses for spatial data are important features for various types of fields. Spatial data are taken at specific locations or within specific regions and their relative positions are recorded. Lattice data are synoptic observation covering an entire spatial region, like cancer rates corresponding to each county in a state. Until now, the echelon analysis has been applied only to univariate spatial data. As a result, it is impossible to detect the hotspots on the multivariate spatial data In this paper, we expand the spatial data to time series structure. And then we analyze them on the time space and detect the hotspots. Echelon dendrogram has been made by piling up each multivariate spatial data to bring time spatial data. We perform the structural analysis of temporal spatial data.

  • PDF

서울의 도심 및 부심 설정과 특화 기능 탐색 (Delineating CBD and Subcentres and Detecting Specialized Areas in that Central Places of Seoul)

  • 서민철
    • 대한지리학회지
    • /
    • 제49권2호
    • /
    • pp.275-298
    • /
    • 2014
  • 본 연구는 서울의 중심업무지구와 부심을 설정하고 그 기능적 특징을 비교하려는 것이다. 본 연구는 기존의 서울 도심 설정 연구에 대하여 두 가지 점을 개선하고자 하였다. 첫째는 기존 연구는 대부분 자료 구득 상의 어려움 때문에 도심 지역이라고 여겨지는 범위에 대하여 집중적으로 자료를 조사하여 분석하였다. 그러므로 늘 중심업무지구의 범위는 가설적인 도심 지역을 벗어날 수 없었다. 본 연구는 서울 전역을 대상으로 자료를 분석하여 도심은 물론 부심까지 동시에 설정하였다. 두번째는 이 자료를 공간 스캔 통계 기법으로 분석함으로써 도심 범위 설정에 있어서 연구자의 주관성을 최소화하고자 하였다. 연구 결과 서울 도심은 기존 연구에 비해 동쪽으로 더 확대된 것으로 나타났다. 반면 서쪽으로는 다소 축소되어 있었다. 또한 도심과 부심의 특화지역을 분석한 결과 도심은 중추 행정, 도매업이 발달하고 강남 부심은 대기업, 사무실, 병원이 발달하여 보다 근대적인 면모를 보이고 있었다.

  • PDF

대구광역시 교통약자 보행자 교통사고 공간 군집 분석 (Spatial clustering of pedestrian traffic accidents in Daegu)

  • 황영은;박성희;최화빈;윤상후
    • 디지털융복합연구
    • /
    • 제20권3호
    • /
    • pp.75-83
    • /
    • 2022
  • OECD 국가 중 보행자 사망 비율이 가장 높은 대한민국은 보행자 중심으로 법령이 제정하면서 안전한 보행환경 개선을 위해 노력하고 있다. 이 연구는 노인 인구와 학원이 밀도가 높은 대구광역시를 대상으로 보행자 교통사고 클러스터를 포아송분포를 이용한 스캔통계량으로 파악하고자 한다. 어린이와 노인에 관한 교통사고의 대중 인식을 수집하여 워드클라우드로 살펴본 결과 어린이는 정부와 기업인의 캠페인을 중심으로 노출되고 있고, 노인은 사고감소를 위한 정책연구를 중심으로 노출되고 있었다. 어린이 보행자 교통사고의 상대적 위험성은 공단이 많은 평리·내당·용산동에서 높았고, 학원 밀집도가 높은 만촌·봉무·범어동에서 낮았다. 노인 보행자 교통사고의 상대적 위험성은 도심에 가까운 용산·죽전·두류·내당동에서 높았고, 범어·삼덕·팔공·봉무동에서 낮았다. 대구광역시 내당동과 용산동은 어린이와 노인 보행사고 위험성이 높아 보행 안전 취약지역으로 파악되었다. 이는 스캔통계량이 교통사고 위험 지역 탐색에 효과적임을 의미한다.

County Level Clustering on Alcohol and HIV Mortality

  • Park, Byeonghwa
    • Communications for Statistical Applications and Methods
    • /
    • 제20권1호
    • /
    • pp.53-62
    • /
    • 2013
  • This study focuses on spatial/temporal relationship deaths caused by Human Immunodeficiency Virus (HIV) and Alcohol Use Disorder (AUD). Several studies have found links between these two diseases. By looking for clusters in mortality of Alcohol and HIV related deaths this study contributes to the field through the identification of exact spatial/temporal time of high and low occurrence risks based on the observed over the expected number of deaths. This study does not provide political or social interpretations of the data. It merely wants to show where clusters are found.

Spatial Cluster Analysis for Earthquake on the Korean Peninsula

  • Kang, Chang-Wan;Moon, Sung-Ho;Cho, Jang-Sik;Lee, Jeong-Hyeong;Choi, Seung-Bae;Beum, Soo-Gyun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1141-1150
    • /
    • 2006
  • In this study, we performed spatial cluster analysis which considered spatial information using earthquake data for Korean peninsula occurred on 1978 year to 2005 year. Also, we look into how to be clustered for regions using earthquake magnitude and frequency based on spatial scan statistic. And, on the basis of the results, we constructed earthquake map by earthquake outbreak risk and gave a possible explanation for the results of spatial cluster analysis.

  • PDF